65 research outputs found

    Advances in the Projective Dynamics Method: A Procedure of Discretizing the Space applied to Markovian Processes

    Get PDF
    AbstractThe projection of a continuous space process to a discrete space process via the transition rates between neighboring bins allows us to relate a master equation to a solution of a stochastic differential equation. The presented method is formulated in its general form for the first time and tested with the Brownian Diffusion process of noninteracting particles with white noise in simple one-dimensional potentials. The comparison of the first passage time obtained with Projective Dynamics, Brownian motion simulations and analytical solutions show the accuracy of this method as well as a wide independence of the particular choice of the binning process

    Eastern Pacific Emitted Aerosol Cloud Experiment

    Get PDF
    Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled predictions of climate are the gaps in our fundamental understanding of cloud processes. There has been significant progress with both observations and models in addressing these important questions but quantifying them correctly is nontrivial, thus limiting our ability to represent them in global climate models. The Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) 2011 was a targeted aircraft campaign with embedded modeling studies, using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft and the research vessel Point Sur in July and August 2011 off the central coast of California, with a full payload of instruments to measure particle and cloud number, mass, composition, and water uptake distributions. EPEACE used three emitted particle sources to separate particle-induced feedbacks from dynamical variability, namely 1) shipboard smoke-generated particles with 0.05–1-μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke), 2) combustion particles from container ships with 0.05–0.2-μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components), and 3) aircraft-based milled salt particles with 3–5-μm diameters (which showed enhanced drizzle rates in some clouds). The aircraft observations were consistent with past large-eddy simulations of deeper clouds in ship tracks and aerosol– cloud parcel modeling of cloud drop number and composition, providing quantitative constraints on aerosol effects on warm-cloud microphysics

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Overview and statistical analysis of boundary layer clouds and precipitation over the western North-Atlantic Ocean

    Get PDF
    Due to their fast evolution and large natural variability in macro- and microphysical properties, the accurate representation of boundary layer clouds in current climate models remains a challenge. One of the regions with large intermodel spread in the Coupled Model Intercomparison Project Phase 6 ensemble is the western North Atlantic Ocean. Here, statistically representative in situ measurements can help to develop and constrain the parameterization of clouds in global models. To this end, we performed comprehensive measurements of boundary layer clouds, aerosol, trace gases, and radiation in the western North Atlantic Ocean during the NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) mission. In total, 174 research flights with 574 flight hours for cloud and precipitation measurements were performed with the HU-25 Falcon during three winter (February–March 2020, January–April 2021, and November 2021–March 2022) and three summer seasons (August–September 2020, May–June 2021, and May–June 2022). Here we present a statistical evaluation of 16 140 individual cloud events probed by the fast cloud droplet probe and the two-dimensional stereo cloud probe during 155 research flights in a representative and repetitive flight strategy allowing for robust statistical data analyses. We show that the vertical profiles of distributions of the liquid water content and the cloud droplet effective diameter (ED) increase with altitude in the marine boundary layer. Due to higher updraft speeds, higher cloud droplet number concentrations (Nliquid) were measured in winter compared to summer despite lower cloud condensation nucleus abundance. Flight cloud cover derived from statistical analysis of in situ data is reduced in summer and shows large variability. This seasonal contrast in cloud coverage is consistent with a dominance of a synoptic pattern in winter that favors conditions for the formation of stratiform clouds at the western edge of cyclones (post-cyclonic). In contrast, a dominant summer anticyclone is concomitant with the occurrence of shallow cumulus clouds and lower cloud coverage. The evaluation of boundary layer clouds and precipitation in the Nliquid ED phase space sheds light on liquid, mixed-phase, and ice cloud properties and helps to categorize the cloud data. Ice and liquid precipitation, often masked in cloud statistics by a high abundance of liquid clouds, is often observed throughout the cloud. The ACTIVATE in situ cloud measurements provide a wealth of cloud information useful for assessing airborne and satellite remote-sensing products, for global climate and weather model evaluations, and for dedicated process studies that address precipitation and aerosol–cloud interactions

    Boundary Layer Structures Over the Northwest Atlantic Derived From Airborne High Spectral Resolution Lidar and Dropsonde Measurements During the ACTIVATE Campaign

    Get PDF
    The Planetary Boundary Layer Height (PBLH) is essential for studying the lower atmosphere and its interaction with the surface. Usually, it contains a mixed layer (ML) with vertically well-mixed (i.e., nearly constant) specific humidity and potential temperature. Over the ocean, the PBL is usually coupled (vertically well-mixed) and the ML height (MLH) is usually close to PBLH, hence the MLH estimated from the measurements of aerosol backscatter by a lidar is traditionally compared with PBLH determined from radiosondes/dropsondes. However, when the PBL is decoupled (not vertically well mixed), the MLH differs from the PBLH. Here we used dropsondes' thermodynamic profile to evaluate the airborne High-Spectral-Resolution Lidar—Generation 2 (HSRL-2) estimation of MLH and PBLH in airborne field campaign over the northwestern Atlantic (ACTIVATE) from 2020 to 2022. We show that the HSRL-2 has excellent MLH estimation compared to the dropsondes. We also improved the HSRL-2 estimation of PBLH. Further data analysis indicates that these conclusions remain the same for cases with different cloud fractions, and for decoupled PBLs. These results demonstrate the potential of using HSRL-2 aerosol backscatter data to estimate both marine MLH and PBLH and suggest that lidar-derived MLH should be compared with radiosonde/dropsonde-determined MLH (not PBLH) in general

    Increasing female participation in municipal elections via the use of local radio in conflict-affected settings: The case of the West Bank municipal elections 2017

    Get PDF
    The 2017 West Bank Municipal elections were framed by locally-based non-governmental organisations (NGOs) and the Palestinian Authorities – albeit to a lesser extent – in terms of the desirability of increasing female participation in them in two particular ways: participation as representatives and participation as voters. Both aspects of participation were supported by extensive radio campaigns conducted by locally-based NGOs. The effectiveness of these campaigns and the approaches used form the basis of this article. Using a mixed methods approach consisting of both quantitative and qualitative data, it concludes that radio has endemic socio-technical advantages for reaching women, particularly in conflict-affected areas, and that broadcasting content aimed at women by women is essential in terms of increasing their representation and voting

    Spaceborne Remote Sensing of Aerosol Type: Global Distribution, Model Evaluation and Translation into Chemical Speciation

    Get PDF
    It is essential to evaluate and refine aerosol classification methods applied to passive satellite remote sensing. We have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground-based passive remote sensing instruments [1]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrialdeveloped economy, urban-industrialdeveloping economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to inversions from the ground-based AErosol RObotic NETwork (AERONET [2]) and retrievals from the space-borne Polarization and Directionality of Earths Reflectances instrument (POLDER, [3]). The POLDER retrievals that we use differ from the standard POLDER retrievals [4] as they make full use of multi-angle, multispectral polarimetric data [5]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER and evaluate GEOS-Chem [6] simulations over the globe. Finally, we use in-situ observations from the SEAC4RS airborne field experiment to bridge the gap between remote sensing-inferred qualitative SCMC aerosol types and their corresponding quantitative chemical speciation. We apply the SCMC method to airborne in-situ observations from the NASA Langley Aerosol Research Group Experiment (LARGE, [7]) and the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP, [8]) instruments; we then relate each coarsely defined SCMC type to a sum of percentage of individual aerosol species, using in-situ observations from the Particle Analysis by Laser Mass Spectrometry (PALMS, [9]), the Soluble Acidic Gases and Aerosol (SAGA, [10]), and the High - Resolution Time - of - Flight Aerosol Mass Spectrometer (HR ToF AMS, [11])
    • …
    corecore