203 research outputs found

    THEORETICAL AND METHODOLOGICAL APPROACHES TO ENSURE THE HEALTH OF CHILDREN, ADOLESCENTS AND YOUTH

    Full text link
    The factors of deterioration of the general health status of children, adolescents and youth in the country are shown. Methods for improving health care and combating the causes of problems at an older age are described.В статье рассматриваются факторы ухудшения общего состояния здоровья детей, подростков и молодёжи в стране. Приведены способы улучшения охраны здоровья и борьбы с причинами возникновения проблем в более старшем возрасте

    Comparison of the In-plane Thermal and Electrical Conductivities and Transverse Pull Strengths of Various Pyrolytic Graphite Materials

    Get PDF
    Different pyrolytic graphite materials were produced varying the annealing parameters such as temperature, pressure and time. These variations should alter the product properties in a systematic way. The coefficient of in-plane thermal conductivity, C_KT, the coefficient of electrical conductivity, σ\sigma and the pull strength S of these samples were measured. Results for the different materials and correlations are reporte

    A Prediction Model to Prioritize Individuals for a SARS-CoV-2 Test Built from National Symptom Surveys

    Get PDF
    Background: The gold standard for COVID-19 diagnosis is detection of viral RNA through PCR. Due to global limitations in testing capacity, effective prioritization of individuals for testing is essential. Methods: We devised a model estimating the probability of an individual to test positive for COVID-19 based on answers to 9 simple questions that have been associated with SARS-CoV-2 infection. Our model was devised from a subsample of a national symptom survey that was answered over 2 million times in Israel in its first 2 months and a targeted survey distributed to all residents of several cities in Israel. Overall, 43,752 adults were included, from which 498 self-reported as being COVID-19 positive. Findings: Our model was validated on a held-out set of individuals from Israel where it achieved an auROC of 0.737 (CI: 0.712–0.759) and auPR of 0.144 (CI: 0.119–0.177) and demonstrated its applicability outside of Israel in an independently collected symptom survey dataset from the US, UK, and Sweden. Our analyses revealed interactions between several symptoms and age, suggesting variation in the clinical manifestation of the disease in different age groups. Conclusions: Our tool can be used online and without exposure to suspected patients, thus suggesting worldwide utility in combating COVID-19 by better directing the limited testing resources through prioritization of individuals for testing, thereby increasing the rate at which positive individuals can be identified. Moreover, individuals at high risk for a positive test result can be isolated prior to testing. Funding: E.S. is supported by the Crown Human Genome Center, Larson Charitable Foundation New Scientist Fund, Else Kroener Fresenius Foundation, White Rose International Foundation, Ben B. and Joyce E. Eisenberg Foundation, Nissenbaum Family, Marcos Pinheiro de Andrade and Vanessa Buchheim, Lady Michelle Michels, and Aliza Moussaieff and grants funded by the Minerva foundation with funding from the Federal German Ministry for Education and Research and by the European Research Council and the Israel Science Foundation. H.R. is supported by the Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research Center and by a research grant from Madame Olga Klein – Astrachan

    Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death

    Get PDF
    Gold nanoparticles (AuNP) have potential as both diagnostic and therapeutic vehicles. However, selective targeting and uptake in cancer cells remains challenging. Cold atmospheric plasma (CAP) can be combined with AuNP to achieve synergistic anti-cancer cytotoxicity. To explore synergistic mechanisms, we demonstrate both rate of AuNP uptake and total amount accumulated in U373MG Glioblastoma multiforme (GBM) cells are significantly increased when exposed to 75 kV CAP generated by dielectric barrier discharge. No significant changes in the physical parameters of AuNP were caused by CAP but active transport mechanisms were stimulated in cells. Unlike many other biological effects of CAP, long-lived reactive species were not involved, and plasma-activated liquids did not replicate the effect. Chemical effects induced by direct and indirect exposure to CAP appears the dominant mediator of enhanced uptake. Transient physical alterations of membrane integrity played a minor role. 3D-reconstruction of deconvoluted confocal images confirmed AuNP accumulation in lysosomes and other acidic vesicles, which will be useful for future drug delivery and diagnostic strategies. Toxicity of AuNP significantly increased by 25-fold when combined with CAP. Our data indicate that direct exposure to CAP activates AuNP-dependent cytotoxicity by increasing AuNP endocytosis and trafficking to lysosomes in U373MG cells

    Universal scaling behavior of non-equilibrium phase transitions

    Full text link
    One of the most impressive features of continuous phase transitions is the concept of universality, that allows to group the great variety of different critical phenomena into a small number of universality classes. All systems belonging to a given universality class have the same critical exponents, and certain scaling functions become identical near the critical point. It is the aim of this work to demonstrate the usefulness of universal scaling functions for the analysis of non-equilibrium phase transitions. In order to limit the coverage of this article, we focus on a particular class of non-equilibrium critical phenomena, the so-called absorbing phase transitions. These phase transitions arise from a competition of opposing processes, usually creation and annihilation processes. The transition point separates an active phase and an absorbing phase in which the dynamics is frozen. A systematic analysis of universal scaling functions of absorbing phase transitions is presented, including static, dynamical, and finite-size scaling measurements. As a result a picture gallery of universal scaling functions is presented which allows to identify and to distinguish universality classes.Comment: review article, 160 pages, 60 figures include

    Effects of IKAP/hELP1 Deficiency on Gene Expression in Differentiating Neuroblastoma Cells: Implications for Familial Dysautonomia

    Get PDF
    Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of IKAP/hELP1 in the development of neuronal cells, we have downregulated IKBKAP expression in SHSY5Y cells, a neuroblastoma cell line of a neural crest origin. We have previously shown that these cells exhibit abnormal cell adhesion when allowed to differentiate under defined culture conditions on laminin substratum. Here, we report results of a microarray expression analysis of IKAP/hELP1 downregulated cells that were grown on laminin under differentiation or non-differentiation growth conditions. It is shown that under non-differentiation growth conditions, IKAP/hELP1 downregulation affects genes important for early developmental stages of the nervous system, including cell signaling, cell adhesion and neural crest migration. IKAP/hELP1 downregulation during differentiation affects the expression of genes that play a role in late neuronal development, in axonal projection and synapse formation and function. We also show that IKAP/hELP1 deficiency affects the expression of genes involved in calcium metabolism before and after differentiation of the neuroblastoma cells. Hence, our data support IKAP/hELP1 importance in the development and function of neuronal cells and contribute to the understanding of the FD phenotype

    Activity of Bdellovibrio Hit Locus Proteins, Bd0108 and Bd0109, Links Type IVa Pilus Extrusion/Retraction Status to Prey-Independent Growth Signalling

    Get PDF
    Bdellovibrio bacteriovorus are facultatively predatory bacteria that grow within gram-negative prey, using pili to invade their periplasmic niche. They also grow prey-independently on organic nutrients after undergoing a reversible switch. The nature of the growth switching mechanism has been elusive, but several independent reports suggested mutations in the hit (host-interaction) locus on the Bdellovibrio genome were associated with the transition to preyindependent growth. Pili are essential for prey entry by Bdellovibrio and sequence analysis of the hit locus predicted that it was part of a cluster of Type IVb pilus-associated genes, containing bd0108 and bd0109. In this study we have deleted the whole bd0108 gene, which is unique to Bdellovibrio, and compared its phenotype to strains containing spontaneous mutations in bd0108 and the common natural 42 bp deletion variant of bd0108. We find that deletion of the whole bd0108 gene greatly reduced the extrusion of pili, whereas the 42 bp deletion caused greater pilus extrusion than wild-type. The pili isolated from these strains were comprised of the Type IVa pilin protein; PilA. Attempts to similarly delete gene bd0109, which like bd0108 encodes a periplasmic/secreted protein, were not successful, suggesting that it is likely to be essential for Bdellovibrio viability in any growth mode. Bd0109 has a sugar binding YD- repeat motif and an N-terminus with a putative pilin-like fold and was found to interact directly with Bd0108. These results lead us to propose that the Bd0109/Bd0108 interaction regulates pilus production in Bdellovibrio (possibly by interaction with the pilus fibre at the cell wall), and that the presence (and possibly retraction state) of the pilus feeds back to alter the growth state of the Bdellovibrio cell. We further identify a novel small RNA encoded by the hit locus, the transcription of which is altered in different bd0108 mutation background

    dOCRL maintains immune cell quiescence in Drosophila by regulating endosomal traffic

    Get PDF
    Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe
    corecore