50 research outputs found
Optimization of the analogue-sensitive Cdc2/Cdk1 mutant by in vivo selection eliminates physiological limitations to its use in cell cycle analysis
Analogue-sensitive (as) mutants of kinases are widely used to selectively inhibit a single kinase with few off-target effects. The analogue-sensitive mutant cdc2-as of fission yeast (Schizosaccharomyces pombe) is a powerful tool to study the cell cycle, but the strain displays meiotic defects, and is sensitive to high and low temperature even in the absence of ATP-analogue inhibitors. This has limited the use of the strain for use in these settings. Here, we used in vivo selection for intragenic suppressor mutations of cdc2-as that restore full function in the absence of ATP-analogues. The cdc2-asM17 underwent meiosis and produced viable spores to a similar degree to the wild-type strain. The suppressor mutation also rescued the sensitivity of the cdc2-as strain to high and low temperature, genotoxins and an anti-microtubule drug. We have used cdc2-asM17 to show that Cdc2 activity is required to maintain the activity of the spindle assembly checkpoint. Furthermore, we also demonstrate that maintenance of the Shugoshin Sgo1 at meiotic centromeres does not require Cdc2 activity, whereas localization of the kinase aurora does. The modified cdc2-asM17 allele can be thus used to analyse many aspects of cell-cycle-related events in fission yeast
The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.
X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
Shugoshin enables tension-generating attachment of kinetochores by loading Aurora to centromeres
Fission yeast shugoshin Sgo1 is meiosis specific and cooperates with protein phosphatase 2A to protect centromeric cohesin at meiosis I. The other shugoshin-like protein Sgo2, which requires the heterochromatin protein Swi6/HP1 for full viability, plays a crucial role for proper chromosome segregation at both mitosis and meiosis; however, the underlying mechanisms are totally elusive. We here demonstrate that, unlike Sgo1, Sgo2 is dispensable for centromeric protection of cohesin. Instead, Sgo2 interacts with Bir1/Survivin and promotes Aurora kinase complex localization to the pericentromeric region, to correct erroneous attachment of kinetochores and thereby enable tension-generating attachment. Forced localization of Bir1 to centromeres partly restored the defects of sgo2Δ. This newly identified interaction of shugoshin with Survivin is conserved between mitosis and meiosis and presumably across eukaryotes. We propose that ensuring bipolar attachment of kinetochores is the primary role of shugoshin and the role of cohesion protection might have codeveloped to facilitate this process
Mutations in the Proteolipid Subunits of the Vacuolar H<sup>+</sup>‑ATPase Provide Resistance to Indolotryptoline Natural Products
Indolotryptoline natural products
represent a small family of structurally
unique chromopyrrolic acid-derived antiproliferative agents. Like
many prospective anticancer agents before them, the exploration of
their potential clinical utility has been hindered by the limited
information known about their mechanism of action. To study the mode
of action of two closely related indolotryptolines (BE-54017, cladoniamide
A), we selected for drug resistant mutants using a multidrug resistance-suppressed
(MDR-sup) <i>Schizosaccharomyces pombe</i> strain. As fission
yeast maintains many of the basic cancer-relevant cellular processes
present in human cells, it represents an appealing model to use in
determining the potential molecular target of antiproliferative natural
products through resistant mutant screening. Full genome sequencing
of resistant mutants identified mutations in the c and c′ subunits
of the proteolipid substructure of the vacuolar H<sup>+</sup>-ATPase
complex (V-ATPase). This collection of resistance-conferring mutations
maps to a site that is distant from the nucleotide-binding sites of
V-ATPase and distinct from sites found to confer resistance to known
V-ATPase inhibitors. Acid vacuole staining, cross-resistance studies,
and direct c/c′ subunit mutagenesis all suggest that indolotryptolines
are likely a structurally novel class of V-ATPase inhibitors. This
work demonstrates the general utility of resistant mutant selection
using MDR-sup <i>S. pombe</i> as a rapid and potentially
systematic approach for studying the modes of action of cytotoxic
natural products
Unimolecular Chemiexcited Oxygenation of Pathogenic Amyloids
Pathogenic protein aggregates, called amyloids, are etiological-ly relevant to various diseases, including neurodegenerative Alzheimer disease. Catalytic photooxygenation of amyloids, such as amyloid-β (Aβ), reduces their toxicity; however, the requirement for light irradiation may limit its utility in large animals, including humans, due to the low tissue permeability of light. Here, we report that Cypridina luciferin analogs, dmCLA-Cl and dmCLA-Br, promoted selective oxygenation of amyloids through chemiexcitation without external light irra-diation. Further structural optimization of dmCLA-Cl led to the identification of a derivative with a polar carboxylate functional group and low cellular toxicity: dmCLA-Cl-acid. dmCLA-Cl-acid promoted oxygenation of Aβ amyloid and reduced its cellular toxicity without photoirradiation. The chemiexcited oxygenation developed in this study may be an effective approach to neutralizing the toxicity of amyloids, which can accumulate deep inside the body, and treating amy-loidosis
A chemical catalyst enabling histone acylation with endogenous acyl-CoA
Abstract Life emerges from a network of biomolecules and chemical reactions catalyzed by enzymes. As enzyme abnormalities are often connected to various diseases, a chemical catalyst promoting physiologically important intracellular reactions in place of malfunctional endogenous enzymes would have great utility in understanding and treating diseases. However, research into such small-molecule chemical enzyme surrogates remains limited, due to difficulties in developing a reactive catalyst capable of activating inert cellular metabolites present at low concentrations. Herein, we report a small-molecule catalyst, mBnA, as a surrogate for a histone acetyltransferase. A hydroxamic acid moiety of suitable electronic characteristics at the catalytic site, paired with a thiol-thioester exchange process, enables mBnA to activate endogenous acyl-CoAs present in low concentrations and promote histone lysine acylations in living cells without the addition of exogenous acyl donors. An enzyme surrogate utilizing cellular metabolites will be a unique tool for elucidation of and synthetic intervention in the chemistry of life and disease