5 research outputs found

    The LHCb upgrade I

    Get PDF
    The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software

    Corrigendum to::More Than Smell-COVID-19 Is Associated with Severe Impairment of Smell, Taste, and Chemesthesis (Chemical Senses (2020) DOI: 10.1093/chemse/bjaa041)

    No full text
    This is a correction notice for article bjaa041 (DOI: https:// doi.org/10.1093/chemse/bjaa041), published 20 June 2020. An incorrect version of the caption to Figure 5 was mistakenly included in the published paper. An updated version is given below. Neither the data nor the paper's conclusions were affected by this correction. The authors sincerely apologize for the error. (A) Correlations between the 3 principal components with respect to changes in 3 chemosensory modalities (i.e., taste, smell, and chemesthesis). Shades of gray indicate positive correlation, whereas shades of red indicate negative correlations. White denotes no correlation. (B) Clusters of participants identified by k-means clustering. The scatterplot shows each participant's loading on dimension 1 (degree of smell and taste loss, PC1 on x-Axis) and dimension 2 (degree of chemesthesis loss, PC2 on y-Axis). Based on the centroid of each cluster, participants in cluster 1 (blue, N = 1767; top left) are generally characterized by significant smell, taste and chemesthesis loss. Participants in cluster 2 (orange, N = 1724; bottom center) are generally characterized by ratings that reflect smell/taste loss with preserved chemesthesis. Loadings for participants in cluster 3 (green, N = 548; right side) are generally characterized by reduced smell and taste loss, and preserved chemesthesis

    Erratum to: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

    No full text
    In the version of this article originally published, the name of author Martin H. de Borst was coded incorrectly in the XML. The error has now been corrected in the HTML version of the paper

    Observation of structure in the J/ψ-pair mass spectrum

    Get PDF
    Using proton-proton collision data at centre-of-mass energies of √s = 8 and 13 TeV recorded by the LHCb experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 9 fb1 , the invariant mass spectrum of J/ψ pairs is studied. A narrow structure around 6.9 GeV=c2 matching the lineshape of a resonance and a broad structure just above twice the J/ψ mass are observed. The deviation of the data from nonresonant J/ψ-pair production is above five standard deviations in the mass region between 6:2 and 7:4 GeV=c2, covering predicted masses of states composed of four charm quarks. The mass and natural width of the narrow X6900 structure are measured assuming a Breit-Wigner lineshape

    Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: A multi-ethnic meta-analysis of 45,891 individuals

    Get PDF
    Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10−8- 1.2 ×10−43). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10−4). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10−3, n = 22,044), increased triglycerides (p = 2.6×10−14, n = 93,440), increased waist-to-hip ratio (p = 1.8×10−5, n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10−3, n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL- cholesterol concentrations (p = 4.5×10−13, n = 96,748) and decreased BMI (p = 1.4×10−4, n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance
    corecore