947 research outputs found

    Proton Differential Elliptic Flow and the Isospin-Dependence of the Nuclear Equation of State

    Get PDF
    Within an isospin-dependent transport model for nuclear reactions involving neutron-rich nuclei, we study the first-order direct transverse flow of protons and their second-order differential elliptic flow as a function of transverse momentum. It is found that the differential elliptic flow of mid-rapidity protons, especially at high transverse momenta, is much more sensitive to the isospin dependence of the nuclear equation of state than the direct flow. Origins of these different sensitivities and their implications to the experimental determination of the isospin dependence of the nuclear equation of state by using neutron-rich heavy-ion collisions at intermediate energies are discussed.Comment: 15 pages, 6 figures. Phys. Rev. C (2001) in pres

    Niobium based intermetallics as a source of high-current/high-magnetic field superconductors

    Full text link
    The article is focused on low temperature intermetallic A15 superconducting wires development for Nuclear Magnetic Resonance, NMR, and Nuclear Magnetic Imaging, MRI, magnets and also on cryogen-free magnets. There are many other applications which would benefit from new development such as future Large Hadron Collider to be built from A15 intermetallic conductors. This paper highlights the current status of development of the niobium based intermetallics with special attention to Nb 3 (Al 1-x, Ge x). Discussion is focused on the materials science aspects of conductor manufacture, such as b-phase (A15) formation, with particular emphasis on the maximisation of the superconducting parameters, such as critical current density, Jc, critical temperature, Tc, and upper critical field, Hc2 . Many successful manufacturing techniques of the potential niobium-aluminide intermetallic superconducting conductors, such as solid-state processing, liquid-solid processing, rapid heating/cooling processes, are described, compared and assessed. Special emphasis has been laid on conditions under which the Jc (B) peak effect occurs in some of the Nb3(Al,Ge) wires. A novel electrodeoxidizing method developed in Cambridge whereby the alloys and intermetallics are produced cheaply making all superconducting electromagnetic devices, using low cost LTCs, more cost effective is presented.This new technique has potential to revolutionise the existing superconducting industry enabling reduction of cost orders of magnitude.Comment: Paper presented at EUCAS'01 conference, Copenhagen, 26-30 August 200

    Increasing eigenstructure assignment design degree of freedom using lifting

    Get PDF
    This paper presents the exposition of an output-lifting eigenstructure assignment (EA) design framework, wherein the available EA design degrees of freedom (DoF) is significantly increased, and the desired eigenstructure of a single-rate full state feedback solution can be achieved within an output feedback system. A structural mapping is introduced to release the output-lifting causality constraint. Additionally, the available design DoF can be further enlarged via involving the input-lifting into the output-lifting EA framework. The newly induced design DoF can be utilised to calculate a structurally constrained, causal gain matrix which will maintain the same assignment capability. In this paper, the robustification of the output-lifting EA is also proposed, which allows a trade-off between performance and robustness in the presence of structured model uncertainties to be established. A lateral flight control benchmark in the EA literature and a numerical example are used to demonstrate the effectiveness of the design framework

    Development of an eight-band theory for quantum-dot heterostructures

    Get PDF
    We derive a nonsymmetrized 8-band effective-mass Hamiltonian for quantum-dot heterostructures (QDHs) in Burt's envelope-function representation. The 8x8 radial Hamiltonian and the boundary conditions for the Schroedinger equation are obtained for spherical QDHs. Boundary conditions for symmetrized and nonsymmetrized radial Hamiltonians are compared with each other and with connection rules that are commonly used to match the wave functions found from the bulk kp Hamiltonians of two adjacent materials. Electron and hole energy spectra in three spherical QDHs: HgS/CdS, InAs/GaAs, and GaAs/AlAs are calculated as a function of the quantum dot radius within the approximate symmetrized and exact nonsymmetrized 8x8 models. The parameters of dissymmetry are shown to influence the energy levels and the wave functions of an electron and a hole and, consequently, the energies of both intraband and interband transitions.Comment: 36 pages, 10 figures, E-mail addresses: [email protected], [email protected]

    Electronic structure of fluorides: general trends for ground and excited state properties

    Full text link
    The electronic structure of fluorite crystals are studied by means of density functional theory within the local density approximation for the exchange correlation energy. The ground-state electronic properties, which have been calculated for the cubic structures CaF2CaF_{2},SrF2SrF_{2}, BaF2BaF_{2}, CdF2CdF_{2}, HgF2HgF_{2}, β\beta -PbF2PbF_{2}, using a plane waves expansion of the wave functions, show good comparison with existing experimental data and previous theoretical results. The electronic density of states at the gap region for all the compounds and their energy-band structure have been calculated and compared with the existing data in the literature. General trends for the ground-state parameters, the electronic energy-bands and transition energies for all the fluorides considered are given and discussed in details. Moreover, for the first time results for HgF2HgF_{2} have been presented

    Inelastic J/ψJ/\psi production in polarized photon-hadron collisions

    Full text link
    Presented here is a calculation of inelastic J/ψJ/\psi production in polarized photon-hadron collisions under the framework of NRQCD factorization formalism. We consider the photoproduction of \jpsi in the energy range relevant to HERA. The Weizs\"acker-Williams approximation is adopted in the evaluation of the cross sections for epep collisions. We found that this process can give another independent test for the color-octet mechanism, and the different features for the two color-octet processes may provide further informations on the mechanism for inelastic \jpsi photoproduction. And the discrepancy on the production asymmetry AA between various sets of polarized gluon distribution functions is also found to be distinctive.Comment: 14pages, 6 PS figure

    Inhomogeneous States in a Small Magnetic Disk with Single-Ion Surface Anisotropy

    Full text link
    We investigate analytically and numerically the ground and metastable states for easy-plane Heisenberg magnets with single-ion surface anisotropy and disk geometry. The configurations with two half-vortices at the opposite points of the border are shown to be preferable for strong anisotropy. We propose a simple analytical description of the spin configurations for all values of a surface anisotropy. The effects of lattice pinning leads to appearance of a set of metastable configurations.Comment: 10 pages, 7 figures; submitted to Phys. Rev.

    Trapping of two-component matter-wave solitons by mismatched optical lattices

    Full text link
    We consider a one-dimensional model of a two-component Bose-Einstein condensate in the presence of periodic external potentials of opposite signs, acting on the two species. The interaction between the species is attractive, while intra-species interactions may be attractive too [the system of the right-bright (BB) type], or of opposite signs in the two components [the gap-bright (GB) model]. We identify the existence and stability domains for soliton complexes of the BB and GB types. The evolution of unstable solitons leads to the establishment of oscillatory states. The increase of the strength of the nonlinear attraction between the species results in symbiotic stabilization of the complexes, despite the fact that one component is centered around a local maximum of the respective periodic potential

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
    corecore