105 research outputs found

    Morphological characterisation of unstained and intact tissue microarchitecture by x-ray computed micro- and nano-tomography

    Get PDF
    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons

    On the dynamic response of an instrumented headform for alternative mounting stiffnesses when subjected to ballistic impacts

    Get PDF
    © 2017, © IMechE 2017. The current British Standard for head protectors for cricketers has been recently revised to include a projectile-based battery of tests, the intention being to ensure that a certified helmet will also prevent contact of the ball or grille with the specified headform facial region. The purpose of this study was to characterise the dynamic response of the headform to direct ballistic impacts for alternative headform mounting arrangements. On one hand, and in accordance with the relevant sections of the Standard, what might be described as a ‘Constrained’ setup was evaluated while, on the other hand, an arrangement with significantly reduced stiffness, in line with that previously reported for the passive human neck, was subject to equivalent appraisal. For each mounting scenario, an air cannon was used to project a cricket training ball at three speeds towards the instrumented headform at three locations with five repeats per speed/location combination. High-rate/resolution video and piezoelectric accelerometer data were collected and processed to determine the headform response. While differences between specific ball impact speed and location scenarios are set out in detail later in the article, overall observations are summarised as follows. From a ball/headform contact duration standpoint, video derived results showed ranges of 1.30–1.45 ms (Constrained) versus 1.26–1.41 ms. Maximum ball deformations, the timing of which enabling the event to be subdivided into ‘loading’ and ‘unloading’ phases, were found to be 82.5%–86.2% (Constrained) versus 82.8%–86.4% of original ball diameter; mean peak headform accelerations during loading were found to be 860–1615 m/s2 (Constrained) versus 967–1638 m/s2; and headform speeds at the end of the loading phase were found to be 0.5–0.92 m/s (Constrained) versus 0.54–0.93 m/s. Differences between headform response for the two mounting arrangements were observed to be more substantial during the loading rather than unloading phase

    Spatial and topological organization of DNA chains induced by gene co-localization

    Get PDF
    Transcriptional activity has been shown to relate to the organization of chromosomes in the eukaryotic nucleus and in the bacterial nucleoid. In particular, highly transcribed genes, RNA polymerases and transcription factors gather into discrete spatial foci called transcription factories. However, the mechanisms underlying the formation of these foci and the resulting topological order of the chromosome remain to be elucidated. Here we consider a thermodynamic framework based on a worm-like chain model of chromosomes where sparse designated sites along the DNA are able to interact whenever they are spatially close-by. This is motivated by recurrent evidence that there exists physical interactions between genes that operate together. Three important results come out of this simple framework. First, the resulting formation of transcription foci can be viewed as a micro-phase separation of the interacting sites from the rest of the DNA. In this respect, a thermodynamic analysis suggests transcription factors to be appropriate candidates for mediating the physical interactions between genes. Next, numerical simulations of the polymer reveal a rich variety of phases that are associated with different topological orderings, each providing a way to increase the local concentrations of the interacting sites. Finally, the numerical results show that both one-dimensional clustering and periodic location of the binding sites along the DNA, which have been observed in several organisms, make the spatial co-localization of multiple families of genes particularly efficient.Comment: Figures and Supplementary Material freely available on http://dx.doi.org/10.1371/journal.pcbi.100067

    Fungal infestation boosts fruit aroma and fruit removal by mammals and birds

    Get PDF
    For four decades, an influential hypothesis has posited that competition for food resources between microbes and vertebrates selects for microbes to alter these resources in ways that make them unpalatable to vertebrates. We chose an understudied cross kingdom interaction to experimentally evaluate the effect of fruit infection by fungi on both vertebrate (mammals and birds) fruit preferences and on ecologically relevant fruit traits (volatile compounds, toughness, etc). Our well-replicated field experiments revealed that, in contrast to previous studies, frugivorous mammals and birds consistently preferred infested over intact fruits. This was concordant with the higher level of attractive volatiles (esters, ethanol) in infested fruits. This investigation suggests that vertebrate frugivores, fleshyfruited plants, and microbes form a tripartite interaction in which each part could interact positively with the other two (e.g. both orange seeds and fungal spores are likely dispersed by mammals). Such a mutualistic view of these complex interactions is opposed to the generalized idea of competition between frugivorous vertebrates and microorganisms. Thus, this research provides a new perspective on the widely accepted plant evolutionary dilemma to make fruits attractive to mutualistic frugivores while unattractive to presumed antagonistic microbes that constrain seed dispersalinfo:eu-repo/semantics/publishedVersio

    Optimal-Foraging Predator Favors Commensalistic Batesian Mimicry

    Get PDF
    BACKGROUND:Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator-prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry). METHODOLOGY/PRINCIPAL FINDINGS:We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a "Pavlovian" predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic. CONCLUSIONS/SIGNIFICANCE:Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of alternative prey and the possibility that predation pressure is not constant

    Regional-scale climate-variability synchrony of cholera epidemics in West Africa

    Get PDF
    BACKGROUND: The relationship between cholera and climate was explored in Africa, the continent with the most reported cases, by analyzing monthly 20-year cholera time series for five coastal adjoining West African countries: Côte d'Ivoire, Ghana, Togo, Benin and Nigeria. METHODS: We used wavelet analyses and derived methods because these are useful mathematical tools to provide information on the evolution of the periodic component over time and allow quantification of non-stationary associations between time series. RESULTS: The temporal variability of cholera incidence exhibits an interannual component, and a significant synchrony in cholera epidemics is highlighted at the end of the 1980's. This observed synchrony across countries, even if transient through time, is also coherent with both the local variability of rainfall and the global climate variability quantified by the Indian Oscillation Index. CONCLUSION: Results of this study suggest that large and regional scale climate variability influence both the temporal dynamics and the spatial synchrony of cholera epidemics in human populations in the Gulf of Guinea, as has been described for two other tropical regions of the world, western South America and Bangladesh

    Traits and stress: keys to identify community effects of low levels of toxicants in test systems

    Get PDF
    Community effects of low toxicant concentrations are obscured by a multitude of confounding factors. To resolve this issue for community test systems, we propose a trait-based approach to detect toxic effects. An experiment with outdoor stream mesocosms was established 2-years before contamination to allow the development of biotic interactions within the community. Following pulse contamination with the insecticide thiacloprid, communities were monitored for additional 2 years to observe long-term effects. Applying a priori ecotoxicological knowledge species were aggregated into trait-based groups that reflected stressor-specific vulnerability of populations to toxicant exposure. This reduces inter-replicate variation that is not related to toxicant effects and enables to better link exposure and effect. Species with low intrinsic sensitivity showed only transient effects at the highest thiacloprid concentration of 100 μg/l. Sensitive multivoltine species showed transient effects at 3.3 μg/l. Sensitive univoltine species were affected at 0.1 μg/l and did not recover during the year after contamination. Based on these results the new indicator SPEARmesocosm was calculated as the relative abundance of sensitive univoltine taxa. Long-term community effects of thiacloprid were detected at concentrations 1,000 times below those detected by the PRC (Principal Response Curve) approach. We also found that those species, characterised by the most vulnerable trait combination, that were stressed were affected more strongly by thiacloprid than non-stressed species. We conclude that the grouping of species according to toxicant-related traits enables identification and prediction of community response to low levels of toxicants and that additionally the environmental context determines species sensitivity to toxicants

    Pigmentation plasticity enhances crypsis in larval newts: Associated metabolic cost and background choice behaviour

    Get PDF
    In heterogeneous environments, the capacity for colour change can be a valuable adaptation enhancing crypsis against predators. Alternatively, organisms might achieve concealment by evolving preferences for backgrounds that match their visual traits, thus avoiding the costs of plasticity. Here we examined the degree of plasticity in pigmentation of newt larvae (Lissotriton boscai) in relation to predation risk. Furthermore, we tested for associated metabolic costs and pigmentation-dependent background choice behaviour. Newt larvae expressed substantial changes in pigmentation so that light, high-reflecting environment induced depigmentation whereas dark, low-reflecting environment induced pigmentation in just three days of exposure. Induced pigmentation was completely reversible upon switching microhabitats. Predator cues, however, did not enhance cryptic phenotypes, suggesting that environmental albedo induces changes in pigmentation improving concealment regardless of the perceived predation risk. Metabolic rate was higher in heavily pigmented individuals from dark environments, indicating a high energetic requirement of pigmentation that could impose a constraint to larval camouflage in dim habitats. Finally, we found partial evidence for larvae selecting backgrounds matching their induced phenotypes. However, in the presence of predator cues, larvae increased the time spent in light environments, which may reflect a escape response towards shallow waters rather than an attempt at increasing crypsisFinancial support was provided by the Spanish Ministry of Science and Innovation (MICINN), Grant CGL2012-40044 to IGM, and by the Universidad Autónoma de Madrid, Short Stay Grant to NPC. Additional financial support was provided by the MICINN, Grant CGL2015-68670-R to NP
    corecore