32 research outputs found
Uncovering distinct protein-network topologies in heterogeneous cell populations
Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can lead to completely different observed relations between the same measured proteins. Attempts to infer such relations in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process with a Bayesian analysis of each unmixed subpopulation. Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus resolving correctly the statistical relations between the proteins. Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between the measured parameters is essential for the success of both of these processes. Here we present a conceptual and algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era, this work addresses an important current challenge in the analysis of the derived data.Fil: Wieczorek, Jakob. Universitat Dortmund; AlemaniaFil: Malik Sheriff, Rahuman S.. Institut Max Planck fur Molekulare Physiologie; Alemania. Imperial College London; Reino Unido. European Bioinformatics Institute. European Molecular Biology Laboratory; Reino UnidoFil: Fermin, Yessica. Universitat Dortmund; AlemaniaFil: Grecco, Hernan Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Zamir, Eli. Institut Max Planck fur Molekulare Physiologie; AlemaniaFil: Ickstadt, Katja. Universitat Dortmund; Alemani
Recommended from our members
Best practices to maximize the use and reuse of quantitative and systems pharmacology models: recommendations from the United Kingdom quantitative and systems pharmacology network
The lack of standardization in the way that quantitative and systems pharmacology (QSP) models are developed, tested, and documented hinders their reproducibility, reusability, and expansion or reduction to alternative contexts. This in turn undermines the potential impact of QSP in academic, industrial, and regulatory frameworks. This article presents a minimum set of recommendations from the UK Quantitative and Systems Pharmacology Network (UK QSP Network) to guide QSP practitioners seeking to maximize their impact, and stakeholders considering the use of QSP models in their environment
Setting the basis of best practices and standards for curation and annotation of logical models in biology
International audienceThe fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks. As the number of published logical models increases, there is a pressing need for systematic model annotation, referencing and curation in community-supported and standardised formats. This article summarises the key topics and future directions of a meeting entitled ‘Annotation and curation of computational models in biology’, organised as part of the 2019 [BC]2 conference. The purpose of the meeting was to develop and drive forward a plan towards the standardised annotation of logical models, review and connect various ongoing projects of experts from different communities involved in the modelling and annotation of molecular biological entities, interactions, pathways and models. This article defines a roadmap towards the annotation and curation of logical models, including milestones for best practices and minimum standard requirements
Infrastructure for synthetic health data
editorial reviewedMachine learning (ML) methods are becoming ever more prevalent across all domains of lifesciences. However, a key component of effective ML is the availability of large datasets thatare diverse and representative. In the context of health systems, with significant heterogeneityof clinical phenotypes and diversity of healthcare systems, there exists a necessity to developand refine unbiased and fair ML models. Synthetic data are increasingly being used to protectthe patient’s right to privacy and overcome the paucity of annotated open-access medical data. Here, we present our proof of concept for the generation of synthetic health data and our proposed FAIR implementation of the generated synthetic datasets. The work was developed during and after the one-week-long BioHackathon Europe, by together 20 participants (10 new to the project), from different countries (NL, ES, LU, UK, GR, FL, DE, . . . ).</p
BioModels—15 years of sharing computational models in life science
Computational modelling has become increasingly common in life science research. To provide a platform to support universal sharing, easy accessibility and model reproducibility, BioModels (https://www.ebi.ac.uk/biomodels/), a repository for mathematical models, was established in 2005. The current BioModels platform allows submission of models encoded in diverse modelling formats, including SBML, CellML, PharmML, COMBINE archive, MATLAB, Mathematica, R, Python or C++. The models submitted to BioModels are curated to verify the computational representation of the biological process and the reproducibility of the simulation results in the reference publication. The curation also involves encoding models in standard formats and annotation with controlled vocabularies following MIRIAM (minimal information required in the annotation of biochemical models) guidelines. BioModels now accepts large-scale submission of auto-generated computational models. With gradual growth in content over 15 years, BioModels currently hosts about 2000 models from the published literature. With about 800 curated models, BioModels has become the world’s largest repository of curated models and emerged as the third most used data resource after PubMed and Google Scholar among the scientists who use modelling in their research. Thus, BioModels benefits modellers by providing access to reliable and semantically enriched curated models in standard formats that are easy to share, reproduce and reuse
SBML Level 3: an extensible format for the exchange and reuse of biological models
Abstract Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose. A community of modelers and software authors developed SBML Level 3 over the past decade. Its modular form consists of a core suited to representing reaction‐based models and packages that extend the core with features suited to other model types including constraint‐based models, reaction‐diffusion models, logical network models, and rule‐based models. The format leverages two decades of SBML and a rich software ecosystem that transformed how systems biologists build and interact with models. More recently, the rise of multiscale models of whole cells and organs, and new data sources such as single‐cell measurements and live imaging, has precipitated new ways of integrating data with models. We provide our perspectives on the challenges presented by these developments and how SBML Level 3 provides the foundation needed to support this evolution
BioSimulators: a central registry of simulation engines and services for recommending specific tools
Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations