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Abstract

Background: Cell biology research is fundamentally limited by the number of intracellular components, particularly
proteins, that can be co-measured in the same cell. Therefore, cell-to-cell heterogeneity in unmeasured proteins can
lead to completely different observed relations between the same measured proteins. Attempts to infer such relations
in a heterogeneous cell population can yield uninformative average relations if only one underlying biochemical
network is assumed. To address this, we developed a method that recursively couples an iterative unmixing process
with a Bayesian analysis of each unmixed subpopulation.

Results: Our approach enables to identify the number of distinct cell subpopulations, unmix their corresponding
observations and resolve the network structure of each subpopulation. Using simulations of the MAPK pathway upon
EGF and NGF stimulations we assess the performance of the method. We demonstrate that the presented method
can identify better than clustering approaches the number of subpopulations within a mixture of observations, thus
resolving correctly the statistical relations between the proteins.

Conclusions: Coupling the unmixing of multiplexed observations with the inference of statistical relations between
the measured parameters is essential for the success of both of these processes. Here we present a conceptual and
algorithmic solution to achieve such coupling and hence to analyze data obtained from a natural mixture of cell
populations. As the technologies and necessity for multiplexed measurements are rising in the systems biology era,
this work addresses an important current challenge in the analysis of the derived data.

Keywords: Bayesian analysis, Cluster analysis, Intercellular variability, Network analysis, Protein networks, Reverse
engineering, Unmixing

Background
In order to understand how a protein network gives rise
to a cellular function it is essential to quantify the states
of the involved proteins and their causal relations. How-
ever, it is actually not possible to strictly define out of the
proteome the subset of all proteins which are involved
in a certain cellular process since these will always have
interactions with proteins not included in this subset. In
spite of major advances in proteomic [1, 2] and cyto-
metric [3–7] methods, quantification of the levels and
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post-translational modifications of all proteins of the pro-
teome in the same cell is still beyond reach. Therefore, we
fundamentally cannot observe the whole system at once
(i.e in the same cell) but only a small part of it (Fig. 1a)
[8]. This limit, by itself, could have been overcome by
looking at different parts of the system in different cells
and building a model of the whole system step by step.
However, such a strategy is fundamentally hampered by
natural cell-to-cell variability which makes the integration
of information highly challenging. Several studies have
addressed the challenge of network reconstruction in the
presence of intrinsic and extrinsic noise [9] around one
prototypic network structure [10–12]. However, in many
physiological cases the cell-to-cell variance is not only due
to noise around one cellular state but also due to sub-
populations which are in qualitatively distinct types of
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Fig. 1 UNPBN addresses the challenge of studying intracellular protein networks caused by unmeasured proteins and inter-cellular heterogeneity. a
A biochemical system for which three proteins (x, y, z) are being measured in the same cell while the other proteins are unmeasured. Note that the
effects of z on x are mediated by unmeasured proteins (α and β). b Depending on the level and state of these unmeasured proteins, the measured
causality between x and z can differ qualitatively between cells. For example, normal and cancer cells have different activity levels of oncogenes and
tumor suppressors which here lead to a negative or a positive causal effect of z on x, respectively, thereby to a controlled growth or a constitutive
growth. c Left, multiparametric high-throughput single-cell measurements (e.g., flow-cytometry) of a heterogenous sample of cells (e.g., cancer and
normal cells). Middle, attempts to statistically infer a single set of relations (here, causal topology) between the measured proteins fail because there
are two distinct subpopulations having two distinct sets of relations. At the same time, it is also impossible to identify the two distinct
subpopulations as two distinct proximity-based clusters. Right, UNPBN performs unmixing and inference of statistical relations as one process, thus
finds the set of sets-of-relations (network topologies) that explains best the observations

states. Such qualitative variabilities within the same cell
population are generated by epigenetic commitment of
cells to different fates (e.g., proliferation versus differen-
tiation) as well as by genetic alterations (Fig. 1b) as in
cancer [13, 14]. In many cases the distinct cell subpopula-
tions are spatially intermixed and therefore are harvested
together and co-measured within the same sample (e.g., by
flow-cytometry). In such cases, causal relations and cor-
relations between measured proteins can be qualitatively
different in different cells if they are mediated by non-
measured proteins which have different states at each sub-
population. Therefore, integration of observations over
the cell population toward onemodel would be invalid and
will yield uninformative average relations (Fig. 1c, middle).

Ultimately, in order to solve this fundamental problem one
should identify the number of qualitatively different sub-
populations in the data, thus unmix the cells in-silico and
resolve separately for each subpopulation the relations
between the measured proteins. A recent work suggested
to use a mixture model to unravel subpopulations in bio-
chemical systems based on ordinary differential equations
and prior knowledge about the number of subpopula-
tions as well as about kinetic constants underlying the
differences between them [15]. In this work we developed
a Bayesian method for achieving this goal without such
prior knowledge.
To unmix observations of cells from different subpopu-

lations, we are taking advantage of the high-dimensiona-
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lity of the observations, as typically obtained from
cell-based high-content measurements such as flow-
cytometry [3, 13, 16, 17], mass-cytometry [4, 5] and
toponome imaging [6, 7]. Within each subpopulation,
stochastic cell-to-cell variability in protein expression lev-
els gives rise to high-dimensional probability distributions
with the same dimensionality as the number of biochem-
ical species (e.g., proteins) measured in each cell. To
this extent, network inference approaches, like Gaussian
Bayesian networks (GBN) [18–20], to resolve a single sta-
tistical model that fits best the data, have been already
developed [21–23]. In this work we use as a basis our pre-
viously described nonparametric Bayesian network anal-
ysis (NPBN, [21]) and expand it to allow for different
network structures in a mixture of different cell subpop-
ulations (Fig. 1c, right). In this method, termed here-
after unmixing-via-NPBN (UNPBN), a flexible number of
Gaussian Bayesian networks is being fitted to the data
and thereby iteratively identifying the number of distinct
subpopulations, unmixing the observations and resolving
the statistical model for each subpopulation. As a model
system to assess and demonstrate our method we simu-
lated the canonical MAPK Raf-Mek-Erk kinases cascade
in the context of PC12 cells stimulated by either epidermal
growth factor (EGF) or nerve growth factor (NGF) [24].
We show that our method identifies better than common
clustering approaches the presence of two subpopulations
within a mixture of EGF and NGF stimulated PC12 cells
based on the levels of active Raf, Mek and Erk in each cell.
This enabled to resolve correctly the statistical relations
between Raf, Mek and Erk in each subpopulation.

Methods
Simulation
The EGF and NGF signaling network was simulated
based on a previously described model [24]. The SBML
format of this model (BIOMD0000000049, www.ebi.ac.
uk, retrieval date Oct. 24, 2011) was imported into the
Matlab Symbiology platform to simulate the dynamics
of the signaling network using ode15s (stiff/NDF) solver.
To introduce intra-subpopulation cell-to-cell variability
(termed herein noise), for each run of the simulation
we sampled the values for the total Raf, Mek and Erk
levels from a Normal distribution N(μ, σ) around the
respective initial concentration for a given set of frac-
tional deviation from the mean (σ = μ · fd, where fd ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}). The values of fd represent
here the degree of stochastic variance in the expression
levels of Raf, Mek and Erk. Simulations were repeated
175 times with random sampling of total Raf, Mek and
Erk levels to generate the data for each cell subpopula-
tion. In each individual simulation repeat, the response of
the network to EGF or NGF was simulated for 600 sec-
onds after stimulation and the levels of c-Raf-Ras-GTP

(hereafter referred as pRaf, reflecting the consequently
activated Raf), ppMek and ppErk (the active, double phos-
phorylated, forms ofMek and Erk, respectively) were sam-
pled every 1 minute as the observed parameters for the
unmixing analysis. Mixtures containing two distinct cell
subpopoulations were generated by mixing an equal num-
ber, unless indicated otherwise, of simulated observations
obtained upon EGF and NGF stimulations. Mixtures con-
taining four distinct cell subpopoulations were generated
by altering the parameter in the SBMLmodel correspond-
ing to the catalytic activity (kcat) of Mek (J136) from its
wild-type (Mekwt) value (kcat = 0.15 s−1) to a value depict-
ing a mutant Mek (Mekmut) with a lower activity (kcat =
0.015 s−1). Thus, by having two different stimulations and
two different levels of Mek activity, observations of four
distinct cell subpopulations were generated: EGF-Mekwt ,
EGF-Mekmut , NGF-Mekwt and NGF-Mekmut (Additional
file 1a-d).

UNPBN
Methodologically, UNPBN is based on the nonparamet-
ric Bayesian networks (NPBN) approach [21]. It allows
to avoid the assumption of underlying Gaussian distri-
butions for the data and to find networks with nonlin-
ear relations between the nodes. The UNPBN method
combines a nonparametric mixture model incorporating
the Dirichlet process [21, 25] and an allocation sampler
[26, 27]. Prior to the description of the UNPBN approach
a short introduction of GBNs [28] is provided here, as
they are a basis of the presented method. We define the
data X, consisting of n observations of a system/network
with d species/nodes (X ∈ R

n×d), such that xj represents
an n-dimensional vector containing the observed concen-
trations of the j species (j = 1, . . . , d). In the Bayesian
networks approach the relations between the nodes in a
graph G are modeled as conditional probability distribu-
tions (CPDs) p. If the CPDs for all nodes in G are given
by Normal distributions of the form xj|paG(xj) ∼ N(μj +∑
Kj

βj,k(xk − μk), σ 2
j ), where paG(xj) denotes the parents of

node xj, Kj = {k|xk ∈ paG(xj)}, the μj and σ 2
j are the

unconditional means and variances of xj, and βj,k are real-
valued coefficients determining the influence of xk on xj,
and, if in addition, G is a directed acyclic graph (DAG)
then the pair (p,G) is called a GBN. The network structure
is inferred using Gaussian distributions with a Normal-
Wishart prior [20]. The estimation of G is embedded in
a Markov Chain Monte Carlo (MCMC) framework, con-
ducted by maximizing the sampling distribution of the
sampled graph

L (G|X) =
d∏
j=1

∫
L

(
σ 2
j ,βj|X({j}∪Kj)

)
p

(
σ 2
j ,βj

)
dσjdβj,

www.ebi.ac.uk
www.ebi.ac.uk
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with βj = (βj,1, . . . ,βj,j−1), (β2, . . . ,βd) = B and X(J )

denotes the columns of X with indices in J . The MCMC
algorithm uses so called single edge operations [29].
UNPBN generalizes the GBN approach as it is based

on flexible nonparametric Bayesian mixture models
for networks [21] which in turn combine different
GBNs for different subsets of the data. The mixture
is taken with respect to all parameters (μ, σ ,B,G).
The model for the data can be written as p(x) =∫
p(x|μ, σ ,B,G)dP(μ, σ ,B,G) with μ and σ vectors of the

unconditional means μj and variances σ 2
j , respectively.

The discrete mixing measure P is distributed according
to P, a random probability measure, and p(x|μ, σ ,B,G)

is a multivariate Normal distribution with a conditional
independence structure compatible with G. According to
the discrete nature of P, support points μh, σh,Bh,Gh and
probabilities wh, the mixture can be written as

p(x) =
N∑
h=1

wh p(x|μh, σh,Bh,Gh).

The prior distribution of the mixing weights wh is
assigned by P and the prior for μh, σh,Bh,Gh is given by
the base measure P0 of P for all h. The N different mix-
ture components h can be interpreted as subpopulations
in the data set. Accordingly, here such subpopulations are
referred to as components. The assignment of each data
point to its corresponding component is described by the
allocation vector l = (l1, . . . , ln)′ [26].
The network structure G and the allocation vector l are

the main focus of our UNPBN procedure. The remain-
ing parameters μh, σh and Bh are integrated out and the
MCMC algorithm iterates by updating the DAG G, the
number of components N and the latent allocation vector
l, leading to the posterior distribution

p(l,G,N |X) =
N∏
h=1

L(G|X(Ih))pN (m)p(N)p(G),

where L(G|X) = ∫
L(σ ,B|X)p(σ ,B)dσdB is the marginal

sampling distribution for G, pN (m) is a probability dis-
tribution on the space of allocation vectors, p(N) is the
distribution of the number of components and Ih = {i ∈
{1, . . . , n}|li = h} and X(I) denotes the rows of X with
indices in I .
In our UNPBN analysis a prior is needed for θh =

(μh, σh,Bh,Gh) and for w1, . . . ,wN . For Gh the prior which
was used is uniform over the cardinality of the parent
sets [30], for σh and Bh we employed the Normal-Wishart
prior distribution with the identity matrix as the precision
matrix and d + 2 degrees of freedom. The mean vector
of the multivariate Normal distribution (μh) was chosen
as a vector of zeros. For N we used a Poisson distribu-
tion with parameter λ = 1 and the wh were obtained from
a Dirichlet distribution with parameter vector (α, . . . ,α)

with α = 1. Further details for the sampling distribution,
posterior distribution and the MCMC sampling scheme
were discussed in previous publications [21, 26, 31]. The
approach is implemented in Matlab (R2009b, The Math-
Works Inc., Natick, Massachusetts). The presented results
are obtained from MCMC runs with 2.8 · 106 iterations
with a thinning of 350 and a burn in of 1.4 · 106 iterations
for networks with two subpopulations and from runs with
5 · 106 iterations with a thinning of 500 and a burn in of
2 · 106 iterations for networks with four subpopulations.

Postprocessing of graphs
Although it is possible to use the output from the UNPBN
analysis directly, for example to choose the most frequent
DAG or allocation vector as a representative, it is prefer-
able to perform an additional postprocessing step that
takes into account all MCMC samples and improves the
results considerably. The inferred graphs in the iterations
of the MCMC simulation are stored in the form of adja-
cency matrices. Such a matrix A consists of the elements
aij (i, j = 1, . . . , d), aij = 1 if nodes i and j are condition-
ally dependent (an arrow leading from node i to node j)
and aij = 0 if nodes i and j are conditionally independent
(no arrow between them) or if i = j. For each pair of nodes
theMCMC output of the UNPBN analysis can be summa-
rized by the posterior edge probability pepij = ∑r

s=1 asij/r
where s is the index of the r iteration steps in the MCMC
simulation. The resulting pep number ranges from 0 (i.e.,
strong evidence for the absence of a connection) to 1 (i.e.,
strong evidence for a connection between the correspond-
ing nodes). These pep values are used in Fig. 5 for the
presentation of the obtained results.

Postprocessing of allocations
For the allocation vector, however, it is not possible to
summarize the sampled vectors in the same way as for
the edges, because of the so called label switching prob-
lem. During the sampling procedure the labels of the
components change randomly, so that if two allocation
vectors are compared it is not clear if a particular obser-
vation has been allocated to a different component or if
the label of the component has changed. We employed
a method based on maximizing the adjusted Rand index
that bypasses this obstacle and that combines the allo-
cation vectors of each MCMC iteration into one single
vector [32]. This method is implemented in R [33] in the
package ’mcclust’ and was used in cases where it was
necessary to fix the number of components to a partic-
ular value (Fig. 4). In cases where the analysis is focused
on the unmixing performance of UNPBN (Fig. 3), the
sampled allocation vectors are evaluated regarding the
homogeneity of the resulting components. For each entry
ls,hi in the allocation vector sampled in iteration s, in
each component h, the true component is determined by
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comparison with the simulation setting. Based on this,
componentwise, observations originating from the same
true component are considered as allocated correctly, (the
indicator function I

(
ls,hi

)
is set to 1) while the remaining

observations in that component are considered as wrongly
allocated (I

(
ls,hi

)
= 0). The percentage of correctly allo-

cated observations (pco) for a particular UNPBN outcome
is derived by

pco = 1
r

r∑
s=1

1
Ns

Ns∑
h=1

1
nsh

nsh∑
i=1

I
(
ls,hi

)
· 100

with r considered MCMC iterations, size nsh of compo-
nent h in iteration s and Ns number of components in the
allocation vector in iteration s.

Cluster analyses
In order to compare UNPBN with clustering methods, k-
means and hierarchical clustering were used in this work.
The k-means clustering method finds the partition that
divides the data to n clusters (where n is given by the
user) such that the sum distances of all observations to
the corresponding cluster mean is minimized [34]. The
k-means cluster analysis was performed in Matlab, using
the function “kmeans” with the distance parameter being
set to squared Euclidean distance. To obtain stable results,
the clustering was repeated 500 times with randomly cho-
sen different starting points. Hierarchical clustering is an
agglomerative procedure which merges in each step the
two closest objects, repeatedly till the whole data set is
in one single cluster. The hierarchical clustering was per-
formed in Matlab using the functions “pdist”, with the
distance parameter being set to Euclidean, followed by
“linkage”, with the method parameter being set to inner
squared distance (“ward”, [35]).

Silhouette analysis
We used the average silhouette width (ASW) [36], to
assess the quality of a given clustering and to compare
the results of clusterings with different parameter set-
tings. For a given clustering result, the silhouette value is
calculated as

sil(xi) = b(xi) − a(xi)
max{a(xi), b(xi)} .

For each observation, xi, a(xi) is the average dissim-
ilarity between xi and all other data points within the
same cluster, and b(xi) is the smallest average dissimi-
larity between xi and the data points in the remaining
clusters, calculated for each cluster separately. Any mea-
sure of dissimilarity can be used, but distance measures
are the most common. In this work the Euclidean distance
was employed. The silhouette value is ranging between

-1 and 1. Negative values indicate that a particular obser-
vation will fit better in another cluster, so it has been
matched wrongly and the quality of the clustering result
can be improved. High positive values indicate a good
clustering result. The ASW is computed by averaging all
sil(xi) values, thus it provides an overall evaluation of
the regarded clustering. While ASW enables to compare
clustering performed with the same method with differ-
ent parameters, ASW values are not comparable between
different clustering methods.

Results
Simulation of inter and intra cell-population variabilities
In order to evaluate the performance of the method we
simulated the MAPK module in PC12 cells using a pre-
viously described model [24]. This model captures the
different temporal profiles of Erk activation upon EGF and
NGF stimulation, attributing it to the differential activa-
tion and dynamics of Ras and Rap (Fig. 2a) [24, 37]. Both
stimulations activate via Sos and Ras the upstream kinase,
Raf and thereby the whole MAPK cascade. However, each
stimulation has a different effect on other proteins which
affect the MAPK module and its dynamics. In EGF stim-
ulation, Erk inhibits Sos and thereby forms a negative
feedback loop leading to a transient Erk activation which
encodes a proliferation signal. In NGF stimulation this
negative feedback is overcome by a nested positive feed-
back loop [38] formed due to the activation of PKCδ

which phosphorylates RKIP and thus leads to its release
from Raf and thereby enabling Raf activation by Erk. The
model used here considers another difference attributed
to a sustained activation of another activator of theMAPK
cascade, Rap1, by NGF but not by EGF [24, 37]. Thus,
NGF leads to a sustained Erk activation, encoding a sig-
nal for differentiation. As a source for inter-population
variability, we simulated the dynamics of the complete
network upon either EGF or NGF stimulation. For the
aim of this work, we based our analyses on snapshots
of the simulation, and, in turn, analyzed each time point
independently. As a source of intra-population variability
(hereafter referred to as noise), we added stochastic noise
in total protein levels mimicking natural cell-to-cell vari-
ance in protein expression (seeMethods). However, unlike
instrumental noise that only affects the readout, noise in
expression levels affects the system itself. Thus, although
the introduced noise was generated as Gaussian, its prop-
agation through the system generates asymmetric high-
order patterns shaped by the topology of the network
(Fig. 2b, c).
In the absence of noise, the levels of phosphorylated

(thus activated) Raf, Mek and Erk follow the expected pro-
files, exhibiting a clear difference between EGF or NGF
stimulations (Fig. 2d, red and green solid lines). With
intra-population variance, the profiles get broader and
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Fig. 2 Simulations of the EGF and NGF signaling network in PC12 cells. a The simulated protein network, as previously described [24]. The elements
(proteins, interactions and processes) that are unique to either EGF or NGF are colored red and green, respectively. The components that we later
consider as the measured components of that system (i.e. Raf, Mek and Erk) are colored grey. b A 3-dimensional scatter plot showing the normalized
levels of active (i.e. phosphorylated) Raf (pRaf), Mek (ppMek) and Erk (ppErk) versus each other at 2 minutes after NGF (green) or EGF (red)
stimulation with noise level of 0.7. c The same as b but for 9 minutes after stimulation. d Time profiles of pRaf, ppMek and ppErk levels as a function
of time after NGF (green) or EGF (red) stimulations, without noise (solid line) or with 0.7 noise level (green and red shadows)

overlap between the two stimulations (Fig. 2d, red and
green shadows), making it difficult to allocate individ-
ual observations to the corresponding stimulation (as for
example at 2minutes after stimulation, Fig. 2b). To impose
the fundamental experimental limit of observing only part
of the system, for the subsequent analysis we considered
an observation to be the triplet formed by the concen-
trations of phosphorylated species of Raf, Mek and Erk
per cell, ignoring all other information. Finally, to generate
heterogeneous cell-populations, we mixed observations
randomly selected in equal amounts from the EGF and
NGF datasets.

UNPBN unmixes observations of distinct subpopulations
We first wanted to test whether UNPBN can classify
correctly observations coming from distinct cell subpop-
ulations. We applied UNPBN on mixed cell populations
having different levels of noise and counted the obser-
vations correctly allocated to the EGF and NGF stim-
ulated subpopulations (Fig. 3a). For noise levels of 0.1,
0.5 and 0.7, around 100%, 93% and 85% of the obser-
vations are correctly allocated, respectively (Fig. 3a). To
assess the accuracies of UNPBN, we compared them to
those achieved by two widely used clustering approaches -
hierarchical clustering and k-means clustering. When the
noise is low (0.1 and 0.3), the two subpopulations are well

separated by all methods (Fig. 3a). As expected, the per-
formance of all three methods is negatively affected when
the noise level is increased. However, the UNPBN con-
siderably outperforms the other reference methods for all
noise levels above 0.2 (Fig. 3a). If the relative abundance of
the two subpopulations is 1:9, all methods classify about
equally well for a low noise level (0.2), while for a high
noise level (0.7) UNPBN classifies as good as k-means but
better than hierarchical clustering (Additional file 2).
We next focused on the high noise level of 0.7 and com-

pared the performance of the methods as a function of
time after stimulation (Fig. 3b). Along the different time
points the performance of all methods varies, reflecting
a changing difficulty to identify the two subpopulations
based on the levels of pRaf, ppMek and ppErk. UNPBN
constantly outperforms the clustering methods in all the
time points and is more robust with its performance level
(Fig. 3b). Furthermore, the performances of the two clus-
tering methods along the time points have a similar pro-
file, which differs from the profile of UNPBN (Fig. 3b, time
points 3-10minutes). These results are consistent with the
fact that, unlike the clustering approaches, UNPBN uses
high-order patterns, rather thanmerely distances between
observations. This additional information is shown here
to be indeed valuable for the ability to unmix subpopula-
tions based on high-dimensional observations.
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Fig. 3 Unmixing observations of a mixed cell population by UNPBN in comparison to clustering approaches. aMixtures of observations of EGF and
NGF stimulated cells with different noise levels were generated as described. Observations were sampled at one-minute intervals for 10 minutes
after stimulation. For each noise level and sampled time point, observations were unmixed using UNPBN, k-means clustering (with k = 2) and
hierarchical clustering (taking the final two clusters). The percentages of correctly allocated observations, averaged over all time points, are indicated
by boxplots for the different methods as a function of the noise level (line within the box, the median; box, the 0.25 and 0.75 quartiles; whiskers, the
largest and smallest data points which are still within the interval of 1.5 times the interquartile range from the box). b Comparison of the unmixing
accuracy with noise level 0.7 along the different sampled time points, as achieved by UNPBN, post-processed UNPBN limited to two components,
k-means (with k = 2) and hierarchical clustering (taking the final two clusters)

UNPBN identifies the number of subpopulations in a
mixture
In many cases, when a sample of cells is derived it is
unknown a priori how many distinct subpopulations it
contains. Therefore, a comprehensive unmixing approach
should also be able to identify the number of subpop-
ulations without such a priori knowledge. Indeed, while
the clustering approaches were guided to search for two
subpopulations, UNPBN was not given this information
but found it independently (Fig. 3b). Moreover, the per-
formance of UNPBN does not change significantly if it is
forced to identify exactly two subpopulations, indicating
the ability of UNPBN to correctly determine by itself the
number of distinct subpopulations in a mixture (Fig. 3b).
In order to compare the capability of the different meth-

ods to identify the number of subpopulations we used the

ASW to determine the quality of the clusters and thereby
the number of clusters (i.e. subpopulations) in the data
as could be inferred by each method [36]. The ASW of a
cluster is a measure of how tightly grouped are the data
points in the cluster, such that larger ASW values denote
tighter clusters. For a cell population containing two sub-
populations (EGF and NGF stimulated cells, Additional
file 1a,b) we calculated the ASW as a function of the
number of clusters derived by UNPBN (here constraints
by postprocessing yield an imposed number of compo-
nents), k-means and hierarchical clustering (Fig. 4a-c). For
UNPBN and k-means clustering, the maximal ASW is
found when the number of clusters is 2, the actual num-
ber of subpopulations in the data (Fig. 4b,c, red bars).
However only in UNPBN there is a significant and robust
difference with the other cluster sizes, while with k-means
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Fig. 4 The success in identifying the correct number of distinct cell subpopoulations (i.e. components) in a mixture by UNBPN in comparison to
clustering approaches. a A boxplot showing the ASW versus the tested number of components obtained by UNBPN analysis (here constrained in
the postprocessing step to the imposed number of components) of a mixture of two subpopulations (EGF and NGF stimulated cells). The boxplot
indicates the median (line within the box), the 0.25 and 0.75 quartiles (box), margined by the largest and smallest data points which are still within
the interval of 1.5 times the interquartile range from the box (whiskers), and the outliers (dots) obtained from pooled values over all time points with
noise level of 0.5. b and c, the same as in a but for ASW obtained following k-means clustering and hierarchical clustering, respectively. d, e and f,
the same as the corresponding a, b and c, but for a mixture of 4 subpopulations: EGF-Mekwt , EGF-Mekmut , NGF-Mekwt and NGF-Mekmut (Additional
file 1a-d). It should be noted that silhouette widths are incomparable between different clustering approaches. However, silhouette widths are
comparable between different parameters of the same clustering approach and thereby indicate the identified number of distinct subpopoulations
as the one providing the largest ASW

clustering the ASWs obtained for 2 and 3 clusters are
not robustly separable. With hierarchical clustering the
performance is further worse since ASWs obtained for 3
and 4 clusters are comparable, or even higher than those
obtained for 2 clusters (Fig. 4c). UNPBN successfully iden-
tified the number of subpopulations also if their relative
abundance was significantly different (1:9, see Additional
file 3).
We next tested the performance of the method with

a more complex mixture of cells containing four dis-
tinct subpopulations. To simulate these subpopulations,
the catalytic rate constant, kcat , of Mek in the model
was changed, mimicking a wild-type Mek (Mekwt) and a
mutant Mek (Mekmut) that phosphorylate Erk at different
rates. Thus, together with the two different stimulations,
EGF and NGF, four distinct subpopulations were gener-
ated, denoted by EGF-Mekwt , EGF-Mekmut , NGF-Mekwt
andNGF-Mekmut (Additional file 1a-d). UNPBN correctly
identified that the data contains four distinct subpopula-
tions, in contrast to k-means and hierarchical clustering
(Fig. 4d-f).

UNPBN uncovers distinct topologies for distinct
subpopulations
The causal relations between the components of a system
are constant, since the set of biochemical reactions and
constants that describe the whole system remains con-
stant. However, in practice, only part of the components
of a system can be co-measured and therefore the reac-
tion constants become apparent constants that depend on
the unmeasured components. Here we intentionally simu-
lated the fundamental limit of looking on only a small part
of a system. Therefore we expected the apparent strength
of the causal connection between pRaf, ppMek and ppErk,
as reflected by the undirected posterior edge probabilities
among them, to change as a function of the stimula-
tion and time. Indeed, when we analyzed separately EGF
and NGF stimulated cells we observed different posterior
edge probabilities between the two treatments, as well as
within each treatment at the different time points (Fig. 5).
When analyzing the mixed population with a standard
GBN approach (i.e. without the possibility of unmixing)
[39], we obtained posterior edge probabilities exhibiting,
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in general, an average behavior of the two subpopula-
tions. Naturally, these average values become meaning-
less when the two subpopulations exhibit very different
posterior edge probabilities (e.g., at 2 minutes, Fig. 5).
In contrast, when analyzing the mixed population with
UNPBN (i.e., with unmixing), the unmixing step enabled
to uncover the true network of posterior edge probabilities
for each stimulation and at each time point (Fig. 5). This
also demonstrates that the performance of the unmixing
process (Fig. 3) was sufficiently good to enable correct
inference of protein-protein relations in each subpopula-
tion. Since more than one DAG may represent exactly the

same set of conditional independence relationships [40],
given static data without perturbations it is more reliable
to infer the causal strengths between proteins, regardless
of the direction of these causalities. Extending the UNPBN
approach to dynamic data, or using perturbation data or
adding prior information, will further facilitate the infer-
ence of directionality in the causal relations for each cell
subpopulation.

Discussion
In the era of systems biology, single-cell measurement
techniques are rapidly expanding with respect to the
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number of cells that can be analyzed and the number
of biochemical species that can be co-measured per cell.
The approaches to explore these data have focused so
far either on identifying different subpopulations of cells
based on multiparametric proximities or on inferring
the topology of statistical relations between the parame-
ters for the population as a whole. However, the aim to
reach each of these two goals in separate has fundamen-
tal problems. In one direction, ignoring the heterogeneity
between cell subpopulations will lead to inferring a mean-
ingless average topology of statistical relations of the pop-
ulation as a whole. In the other direction, since statistical
relations are inferred from the correlation between the
measured parameters, the identification of cell subpopu-
lations based on multiparametric proximities inherently
conflicts with the capability to resolve the topology of rela-
tions within each subpopulation. Furthermore, protein
networks with distinct topologies can be at the same state
(i.e., to have high multiparametric proximity) and protein
networks with the same topology can be at different states
(e.g., at different phases along an oscillatory response).
Therefore, attempts to identify cell subpopulations based
on multiparametric proximities may actually identify dif-
ferent cellular states but not different types of cells. The
method presented here pioneers a comprehensive solu-
tion to these fundamental problems by performing the
identification of cell subpopulations (i.e. unmixing) and
the inference of statistical relations between the measured
parameters in one joint analysis.
Intentionally, we used snapshot data of a dynamic pro-

cess (the response of cells to EGF or NGF stimulations)
and, respectively, the method we developed does not rely
on temporal information nor intends to give a model
description of the dynamic itself. Due to that, this method
can be applied on the type of single-cell multipara-
metric measurements currently available such as multi-
color flow-cytometry [3, 16], multiplexed mass cytometry
[4, 5] and toponome imaging [6, 7]. The classification of
the distinct subpopulations in cell populations sampled at
different time points along an experiment can hint toward
the dynamic behavior of each subpopulation. However,
such traceability of subpopulations along the time points
depends on how different is their relative abundance
within the whole population and on the sampling rate
in comparison to the timescale of the biological process.
Advances in multicolor live cell imaging in combination
with high-throughput automated microscopy gradually
facilitate monitoring increasing numbers of parameters in
individual live cells over many cells. The data obtained
from such measurements will enable not only tracking the
dynamics of the measured parameters in each cell sub-
population but also tracking them in individual cells. This
kind of temporal information will help to further improve
the identification of the distinct cell subpopulations and

the inference of statistical relations between measured
parameters in each subpoulation. As indicated by this
work, it would be important also for the analysis of such
live cell measurement data that unmixing and inference
of protein-protein relations will be performed as one
process.
The importance to recover single-cell phenotypes out

of an uninformative average cell population behavior
has been established and exemplified in many systems.
Notably, in these examples there was only one measured
parameter per cell, often the output of the system, and,
therefore, the unmixing was straightforward. However, in
order to obtain mechanistic insight into how a biochem-
ical system works it is required to examine the protein
network itself, and not only its output. For this, multiple
parameters should be co-measured per cell to overcome
uncorrelated cell-to-cell variability between these param-
eters (e.g., due to stochastic noise in expression levels as
simulated in this work). We demonstrated here that in
such a case unmixing cannot be achieved anymore using
the proximity between the values of these parameters,
while it can be successfully achieved using the high-
order relations between them as captured by UNPBN.
Importantly, UNPBN can be straightforwardly extended
to incorporate prior knowledge about parts of the network
in the individual subpopulations.

Conclusions
Our results show that the coupling between unmixing
of observations and inference of statistical relations is
essential and effective. With respect to the unmixing,
our method was capable to identify the number of qual-
itatively distinct subpopulations considerably better than
multiparametric proximity based approaches (hierarchi-
cal clustering and k-means clustering). Consequently, the
statistical relations in each unmixed subpopulation were
also correctly recovered, while, without unmixing, unin-
formative average relations were inferred. As systems biol-
ogy and personalizedmedicine are aiming toward reverse-
engineering and re-engineering signaling networks, they
are increasingly challenged by the inter-cellular variability
and the large size of the relevant biochemical system. The
work presented here offers a conceptual solution as well as
an applicable statistical method to address this challenge.

Additional files

Additional file 1: The four distinct simulated topologies of the EGF
and NGF signaling network used in Fig. 4. (a) NGF-Mekwt : the wild-type
network (see Methods) with NGF stimulation. (b) EGF-Mekwt : as in (a) but
with EGF stimulation. (c) NGF-Mekmut : the wild-type network with NGF
stimulation, beside that here the SBML model parameter corresponding to
the kcat of Mek (J136) is altered from its wild-type value (kcat = 0.15 s−1) to a
value depicting a mutant Mek with a lower activity (kcat = 0.015 s−1), as

http://www.biomedcentral.com/content/supplementary/s12918-015-0170-2-s1.pdf
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indicates the thinner arrow from Mek to Erk. (d) EGF-Mekmut : as in (c) but
with EGF stimulation.

Additional file 2: Unmixing observations of cell subpopulations,
mixed in a 1:9 ratio, by UNPBN in comparison to clustering
approaches.Mixtures of observations of EGF stimulated cells (90%) and
NGF stimulated cells (10%) were generated with noise levels of 0.2 and 0.7.
Observations were sampled at one-minute intervals for 10 minutes after
stimulation. For each noise level and sampled time point, observations
were unmixed using UNPBN, k-means clustering (with k = 2) and
hierarchical clustering (taking the final two clusters). The percentages of
correctly allocated observations, averaged over all time points, are indicated
by boxplots for the different methods for both noise levels (line within the
box, the median; box, the 0.25 and 0.75 quartiles; whiskers, the largest and
smallest data points which are still within the interval of 1.5 times the
interquartile range from the box). (a) The percentages of correctly allocated
observations of the EGF-stimulated subpopulation. (b) The percentages of
correctly allocated observations of the NGF-stimulated subpopulation.

Additional file 3: The success of UNPBN in identifying the correct
number of cell subpopulations (i.e. components) mixed in a 1:9 ratio.
Mixtures of observations of EGF stimulated cells (90%) and NGF stimulated
cells (10%) were generated with noise levels of 0.2 and 0.7. Observations
were sampled at one-minute intervals for 10 minutes after stimulation. (a)
A boxplot showing the ASW versus the tested number of components
obtained by UNBPN analysis (here constrained in the postprocessing step
to the imposed number of components). Each boxplot indicates the
median (line within the box), the 0.25 and 0.75 quartiles (box), margined by
the largest and smallest data points which are still within the interval of 1.5
times the interquartile range from the box (whiskers), and the outliers
(dots) obtained from pooled values over all time points with a noise level
of 0.2. (b) The same as (a) but with a noise level of 0.7.
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