129 research outputs found

    Safety and efficacy of the NVX-CoV2373 coronavirus disease 2019 vaccine at completion of the placebo-controlled phase of a randomized controlled trial

    Get PDF
    Background: The recombinant protein-based vaccine, NVX-CoV2373, demonstrated 89.7% efficacy against coronavirus disease 2019 (COVID-19) in a phase 3, randomized, observer-blinded, placebo-controlled trial in the United Kingdom. The protocol was amended to include a blinded crossover. Data to the end of the placebo-controlled phase are reported. Methods: Adults aged 18–84 years received 2 doses of NVX-CoV2373 or placebo (1:1) and were monitored for virologically confirmed mild, moderate, or severe COVID-19 (onset from 7 days after second vaccination). Participants who developed immunoglobulin G (IgG) against nucleocapsid protein but did not show symptomatic COVID-19 were considered asymptomatic. Secondary outcomes included anti-spike (S) IgG responses, wild-type virus neutralization, and T-cell responses. Results: Of 15 185 participants, 13 989 remained in the per-protocol efficacy population (6989 NVX-CoV2373, 7000 placebo). At a maximum of 7.5 months (median, 4.5) postvaccination, there were 24 cases of COVID-19 among NVX-CoV2373 recipients and 134 cases among placebo recipients, a vaccine efficacy of 82.7% (95% confidence interval [CI], 73.3%–88.8%). Vaccine efficacy was 100% (95% CI, 17.9%–100.0%) against severe disease and 76.3% (95% CI, 57.4%–86.8%) against asymptomatic disease. High anti-S and neutralization responses to vaccination were evident, together with S-protein–specific induction of interferon-γ secretion in peripheral blood T cells. Incidence of serious adverse events and adverse events of special interest were similar between groups. Conclusions: A 2-dose regimen of NVX-CoV2373 conferred a high level of ongoing protection against asymptomatic, symptomatic, and severe COVID-19 through >6 months postvaccination. A gradual decrease of protection suggests that a booster may be indicated. Clinical Trials Registration: EudraCT, 2020-004123-16

    Safety and Efficacy of the NVX-CoV2373 Coronavirus Disease 2019 Vaccine at Completion of the Placebo-Controlled Phase of a Randomized Controlled Trial

    Get PDF
    Acknowledgements The study and article were funded by Novavax. We would like to thank all the study participants for their commitment to this study. We also acknowledge the investigators and their study teams for their hard work and dedication. In addition, we would like to thank the National Institute for Health Research, representatives from the Department of Health and Social Care laboratories and NHS Digital and the members of the UK Vaccine Task Force. Editorial support was provided by Kelly Cameron of Ashfield MedComms, an Inizio company Funding This work was funded by Novavax, and the sponsor had primary responsibility for study design, study vaccines, protocol development, study monitoring, data management, and statistical analyses. All authors reviewed and approved the manuscript before submission. LF reports a position as a prior full-time employee, now contractor to Novavax re-imbursed hourly for work performed on this study and in analyses and drafting this report. IC reports providing medical writing support for this work as an employee of NovavaxPeer reviewedPublisher PD

    Ergothioneine Biosynthesis and Functionality in the Opportunistic Fungal Pathogen, Aspergillus fumigatus.

    Get PDF
    Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a trimethylated and sulphurised histidine derivative which exhibits antioxidant properties. Here we report that deletion of Aspergillus fumigatus egtA (AFUA_2G15650), which encodes a trimodular enzyme, abrogated EGT biosynthesis in this opportunistic pathogen. EGT biosynthetic deficiency in A. fumigatus significantly reduced resistance to elevated H2O2 and menadione, respectively, impaired gliotoxin production and resulted in attenuated conidiation. Quantitative proteomic analysis revealed substantial proteomic remodelling in ΔegtA compared to wild-type under both basal and ROS conditions, whereby the abundance of 290 proteins was altered. Specifically, the reciprocal differential abundance of cystathionine γ-synthase and β-lyase, respectively, influenced cystathionine availability to effect EGT biosynthesis. A combined deficiency in EGT biosynthesis and the oxidative stress response regulator Yap1, which led to extreme oxidative stress susceptibility, decreased resistance to heavy metals and production of the extracellular siderophore triacetylfusarinine C and increased accumulation of the intracellular siderophore ferricrocin. EGT dissipated H2O2 in vitro, and elevated intracellular GSH levels accompanied abrogation of EGT biosynthesis. EGT deficiency only decreased resistance to high H2O2 levels which suggests functionality as an auxiliary antioxidant, required for growth at elevated oxidative stress conditions. Combined, these data reveal new interactions between cellular redox homeostasis, secondary metabolism and metal ion homeostasis

    Identification of Novel Inhibitors of Dietary Lipid Absorption Using Zebrafish

    Get PDF
    Pharmacological inhibition of dietary lipid absorption induces favorable changes in serum lipoprotein levels in patients that are at risk for cardiovascular disease and is considered an adjuvant or alternative treatment with HMG-CoA reductase inhibitors (statins). Here we demonstrate the feasibility of identifying novel inhibitors of intestinal lipid absorption using the zebrafish system. A pilot screen of an unbiased chemical library identified novel compounds that inhibited processing of fluorescent lipid analogues in live zebrafish larvae. Secondary assays identified those compounds suitable for testing in mammals and provided insight into mechanism of action, which for several compounds could be distinguished from ezetimibe, a drug used to inhibit cholesterol absorption in humans that broadly inhibited lipid absorption in zebrafish larvae. These findings support the utility of zebrafish screening assays to identify novel compounds that target complex physiological processes

    Treatment and Intervention for Opiate Dependence in the United Kingdom:Lessons from Triumph and Failure

    Get PDF
    The history of opiate treatment in the United Kingdom (UK) since the early 1980s is a rich source of learning about the benefits and pitfalls of drug treatment policy. We present five possible lessons to be learnt about how factors outside the clinic, including government, charities and researchers can influence treatment and outcomes. First, do not let a crisis go to waste. The philosophical shift from abstinence to harm reduction in the 1980s, in response to an HIV outbreak in injecting users, facilitated expansion in addiction services and made a harm reduction approach more acceptable. Second, studies of drug-related deaths can lead to advances in care. By elucidating the pattern of mortality, and designing interventions to address the causes, researchers have improved patient safety in certain contexts, though significant investment in Scotland has not arrested rising mortality. Third, collection of longitudinal data and its use to inform clinical guidelines, as pursued from the mid-1990s, can form an enduring evidence base and shape policy, sometimes in unintended ways. Fourth, beware of the presentation of harm reduction and recovery as in conflict. At the least, this reduces patient choice, and at worst, it has caused some services to be redesigned in a manner that jeopardises patient safety. Fifth, the relationship between the third and state sectors must be carefully nurtured. In the UK, early collaboration has been replaced by competition, driven by changes in funding, to the detriment of service provision

    Recurrent SARS-CoV-2 mutations in immunodeficient patients

    Get PDF
    Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape, or viral packaging optimisation.There is an apparent selective pressure for mutations that aid cell–cell transmission within the host or persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be discounted

    Elemental and chemically specific x-ray fluorescence imaging of biological systems

    Get PDF

    Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection

    No full text
    BACKGROUND Clostridium difficile is the most common cause of infectious diarrhea in hospitalized patients. Recurrences are common after antibiotic therapy. Actoxumab and bezlotoxumab are human monoclonal antibodies against C. difficile toxins A and B, respectively. METHODS We conducted two double-blind, randomized, placebo-controlled, phase 3 trials, MODIFY I and MODIFY II, involving 2655 adults receiving oral standard-of-care antibiotics for primary or recurrent C. difficile infection. Participants received an infusion of bezlotoxumab (10 mg per kilogram of body weight), actoxumab plus bezlotoxumab (10 mg per kilogram each), or placebo; actoxumab alone (10 mg per kilogram) was given in MODIFY I but discontinued after a planned interim analysis. The primary end point was recurrent infection (new episode after initial clinical cure) within 12 weeks after infusion in the modified intention-to-treat population. RESULTS In both trials, the rate of recurrent C. difficile infection was significantly lower with bezlotoxumab alone than with placebo (MODIFY I: 17% [67 of 386] vs. 28% [109 of 395]; adjusted difference, −10.1 percentage points; 95% confidence interval [CI], −15.9 to −4.3; P<0.001; MODIFY II: 16% [62 of 395] vs. 26% [97 of 378]; adjusted difference, −9.9 percentage points; 95% CI, −15.5 to −4.3; P<0.001) and was significantly lower with actoxumab plus bezlotoxumab than with placebo (MODIFY I: 16% [61 of 383] vs. 28% [109 of 395]; adjusted difference, −11.6 percentage points; 95% CI, −17.4 to −5.9; P<0.001; MODIFY II: 15% [58 of 390] vs. 26% [97 of 378]; adjusted difference, −10.7 percentage points; 95% CI, −16.4 to −5.1; P<0.001). In prespecified subgroup analyses (combined data set), rates of recurrent infection were lower in both groups that received bezlotoxumab than in the placebo group in subpopulations at high risk for recurrent infection or for an adverse outcome. The rates of initial clinical cure were 80% with bezlotoxumab alone, 73% with actoxumab plus bezlotoxumab, and 80% with placebo; the rates of sustained cure (initial clinical cure without recurrent infection in 12 weeks) were 64%, 58%, and 54%, respectively. The rates of adverse events were similar among these groups; the most common events were diarrhea and nausea. CONCLUSIONS Among participants receiving antibiotic treatment for primary or recurrent C. difficile infection, bezlotoxumab was associated with a substantially lower rate of recurrent infection than placebo and had a safety profile similar to that of placebo. The addition of actoxumab did not improve efficacy. (Funded by Merck; MODIFY I and MODIFY II ClinicalTrials.gov numbers, NCT01241552 and NCT01513239.

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
    corecore