2,906 research outputs found

    The Tempo and Mode of Three‐Dimensional Morphological Evolution in Male Reproductive Structures

    Get PDF
    Various evolutionary forces may shape the evolution of traits that influence the mating decisions of males and females. Phe- notypic traits that males and females use to judge the species identify of potential mates should evolve in a punctuated fashion, changing significantly at the time of speciation but changing little between speciation events. In contrast, traits experiencing sexual selection or sexually antagonistic interactions are generally expected to change continuously over time because of the directional selection pressures imposed on one sex by the actions of the other. To test these hy- potheses, we used spherical harmonic representations of the shapes of male mating structures in reconstructions of the evolutionary tempo of these structures across the history of the Enallagma dam- selfly clade. Our analyses show that the evolution of these structures is completely consistent with a punctuated model of evolutionary change and a constant evolutionary rate throughout the clade’s his- tory. In addition, no interpopulation variation in shape was detected across the range of one species. These results indicate that male mating structures in this genus are used primarily for identifying the species of potential mates and experience little or no selection from intraspecific sexual selection or sexual antagonism. The implications of these results for speciation are discussed

    Electrical/optical dual-function redox potential transistor

    Get PDF
    We demonstrate a new type of transistors, the electrical/optical “dual-function redox-potential transistors”, which is solution processable and environmentally stable. This device consists of vertically staked electrodes that act as gate, emitter and collector. It can perform as a normal transistor, whilst one electrode which is sensitised by dye enables to generate photocurrent when illuminated. Solution processable oxide-nanoparticles were used to form various functional layers, which allow an electrolyte to penetrate through and, consequently, the current between emitter and collector can be controlled by the gate potential modulated distribution of ions. The result here shows that the device performs with high ON-current under low driving voltage (<1 V), while the transistor performance can readily be controlled by photo-illumination. Such device with combined optical and electrical functionalities allows single device to perform the tasks that are usually done by a circuit/system with multiple optical and electrical components, and it is promising for various applications

    GaN Nanowire Schottky Barrier Diodes

    Get PDF
    A new concept of vertical gallium nitride (GaN) Schottky barrier diode based on nanowire (NW) structures and the principle of dielectric REduced SURface Field (RESURF) is proposed in this paper. High-threading dislocation density in GaN epitaxy grown on foreign substrates has hindered the development and commercialization of vertical GaN power devices. The proposed NW structure, previously explored for LEDs offers an opportunity to reduce defect density and fabricate low cost vertical GaN power devices on silicon (Si) substrates. In this paper, we investigate the static characteristics of high-voltage GaN NW Schottky diodes using 3-D TCAD device simulation. The NW architecture theoretically achieves blocking voltages upward of 700 V with very low specific on-resistance. Two different methods of device fabrication are discussed. Preliminary experimental results are reported on device samples fabricated using one of the proposed methods. The fabricated Schottky diodes exhibit a breakdown voltage of around 100 V and no signs of current collapse. Although more work is needed to further explore the nano-GaN concept, the preliminary results indicate that superior tradeoff between the breakdown voltage and specific on-resistance can be achieved, all on a vertical architecture and a foreign substrate. The proposed NW approach has the potential to deliver low cost reliable GaN power devices, circumventing the limitations of today's high electron mobility transistors (HEMTs) technology and vertical GaN on GaN devices

    Curve classes on irreducible holomorphic symplectic varieties

    Full text link
    We prove that the integral Hodge conjecture holds for 1-cycles on irreducible holomorphic symplectic varieties of K3 type and of Generalized Kummer type. As an application, we give a new proof of the integral Hodge conjecture for cubic fourfolds.Comment: 15 page

    Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma

    Full text link
    Published in final edited form as: Sci Transl Med. 2017 May 10; 9(389). https://doi.org/10.1126/scitranslmed.aal2668.Multiple myeloma (MM) is a frequently incurable hematological cancer in which overactivity of MYC plays a central role, notably through up-regulation of ribosome biogenesis and translation. To better understand the oncogenic program driven by MYC and investigate its potential as a therapeutic target, we screened a chemically diverse small-molecule library for anti-MM activity. The most potent hits identified were rocaglate scaffold inhibitors of translation initiation. Expression profiling of MM cells revealed reversion of the oncogenic MYC-driven transcriptional program by CMLD010509, the most promising rocaglate. Proteome-wide reversion correlated with selective depletion of short-lived proteins that are key to MM growth and survival, most notably MYC, MDM2, CCND1, MAF, and MCL-1. The efficacy of CMLD010509 in mouse models of MM confirmed the therapeutic relevance of these findings in vivo and supports the feasibility of targeting the oncogenic MYC-driven translation program in MM with rocaglates

    Interfacial bonding mechanism in Al/coated steel dissimilar refill friction stir spot welds

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.jmst.2019.01.001 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Defect-free dissimilar Al/zinc coated steel and Al/AlSi coated steel welds were successfully fabricated by refill friction stir spot welding. However, Al alloy and uncoated steel could not be welded under the same welding condition. Al-Zn eutectic layer formed at the Al/zinc coated steel interface showed non-uniformity in thickness and nanoscale intermetallic (IMC) produced was discontinuous. The bonding formation between the Al-Zn layer and the surrounding materials was attributed to a liquid/solid reaction mechanism. Bonding formation at Al alloy and AlSi coated steel interface was attributed to a solid/solid reaction mechanism, as the joining process did not involve with melting of base metals or AlSi coating materials. Kissing bond formed at the weld boundary acted as a crack initiation and propagation site, and the present study showed that weld strength of Al 5754/AlSi coated steel was greatly influenced by properties of original IMC layer.Natural Science and Engineering Council of CanadaCanadian Foundation for Innovatio

    Chemically induced Jahn–Teller ordering on manganite surfaces

    Get PDF
    Physical and electrochemical phenomena at the surfaces of transition metal oxides and their coupling to local functionality remains one of the enigmas of condensed matter physics. Understanding the emergent physical phenomena at surfaces requires the capability to probe the local composition, map order parameter fields and establish their coupling to electronic properties. Here we demonstrate that measuring the sub-30-pm displacements of atoms from high-symmetry positions in the atomically resolved scanning tunnelling microscopy allows the physical order parameter fields to be visualized in real space on the single-atom level. Here, this local crystallographic analysis is applied to the in-situ-grown manganite surfaces. In particular, using direct bond-angle mapping we report direct observation of structural domains on manganite surfaces, and trace their origin to surface-chemistryinduced stabilization of ordered Jahn–Teller displacements. Density functional calculations provide insight into the intriguing interplay between the various degrees of freedom now resolved on the atomic level

    Controlling Cherenkov angles with resonance transition radiation

    Full text link
    Cherenkov radiation provides a valuable way to identify high energy particles in a wide momentum range, through the relation between the particle velocity and the Cherenkov angle. However, since the Cherenkov angle depends only on material's permittivity, the material unavoidably sets a fundamental limit to the momentum coverage and sensitivity of Cherenkov detectors. For example, Ring Imaging Cherenkov detectors must employ materials transparent to the frequency of interest as well as possessing permittivities close to unity to identify particles in the multi GeV range, and thus are often limited to large gas chambers. It would be extremely important albeit challenging to lift this fundamental limit and control Cherenkov angles as preferred. Here we propose a new mechanism that uses constructive interference of resonance transition radiation from photonic crystals to generate both forward and backward Cherenkov radiation. This mechanism can control Cherenkov angles in a flexible way with high sensitivity to any desired range of velocities. Photonic crystals thus overcome the severe material limit for Cherenkov detectors, enabling the use of transparent materials with arbitrary values of permittivity, and provide a promising option suited for identification of particles at high energy with enhanced sensitivity.Comment: There are 16 pages and 4 figures for the manuscript. Supplementary information with 18 pages and 5 figures, appended at the end of the file with the manuscript. Source files in Word format converted to PDF. Submitted to Nature Physic

    The Radio Structure of High-Energy Peaked BL Lacertae Objects

    Get PDF
    We present VLA and first-epoch VLBA observations that are part of a program to study the parsec-scale radio structure of a sample of fifteen high-energy-peaked BL Lacs (HBLs). The sample was chosen to span the range of logarithmic X-ray to radio flux ratios observed in HBLs. As this is only the first epoch of observations, proper motions of jet components are not yet available; thus we consider only the structure and alignment of the parsec- and kiloparsec-scale jets. Like most low-energy-peaked BL Lacs (LBLs), our HBL sample shows parsec-scale, core-jet morphologies and compact, complex kiloparsec-scale morphologies. Some objects also show evidence for bending of the jet 10-20pc from the core, suggesting interaction of the jet with the surrounding medium. Whereas LBLs show a wide distribution of parsec- to kpc-scale jet misalignment angles, there is weak evidence that the jets in HBLs are more well-aligned, suggesting that HBL jets are either intrinsically straighter or are seen further off-axis than LBL jets.Comment: Accepted, A

    The Time-Domain Spectroscopic Survey: Understanding the Optically Variable Sky with SEQUELS in SDSS-III

    Get PDF
    The Time-Domain Spectroscopic Survey (TDSS) is an SDSS-IV eBOSS subproject primarily aimed at obtaining identification spectra of ~220,000 optically-variable objects systematically selected from SDSS/Pan-STARRS1 multi-epoch imaging. We present a preview of the science enabled by TDSS, based on TDSS spectra taken over ~320 deg^2 of sky as part of the SEQUELS survey in SDSS-III, which is in part a pilot survey for eBOSS in SDSS-IV. Using the 15,746 TDSS-selected single-epoch spectra of photometrically variable objects in SEQUELS, we determine the demographics of our variability-selected sample, and investigate the unique spectral characteristics inherent in samples selected by variability. We show that variability-based selection of quasars complements color-based selection by selecting additional redder quasars, and mitigates redshift biases to produce a smooth quasar redshift distribution over a wide range of redshifts. The resulting quasar sample contains systematically higher fractions of blazars and broad absorption line quasars than from color-selected samples. Similarly, we show that M-dwarfs in the TDSS-selected stellar sample have systematically higher chromospheric active fractions than the underlying M-dwarf population, based on their H-alpha emission. TDSS also contains a large number of RR Lyrae and eclipsing binary stars with main-sequence colors, including a few composite-spectrum binaries. Finally, our visual inspection of TDSS spectra uncovers a significant number of peculiar spectra, and we highlight a few cases of these interesting objects. With a factor of ~15 more spectra, the main TDSS survey in SDSS-IV will leverage the lessons learned from these early results for a variety of time-domain science applications.Comment: 17 pages, 14 figures, submitted to Ap
    • 

    corecore