View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dartmouth Digital Commons (Dartmouth College)

Dartmouth College

Dartmouth Digital Commons

Dartmouth Scholarship Faculty Work

3-19-2008

The Tempo and Mode of Three-Dimensional Morphological
Evolution in Male Reproductive Structures

Mark A. McPeek
Dartmouth College

Li Shen
Indiana University School of Medicine

John Z. Torrey
Princeton University

Hany Farid
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa

b Part of the Ecology and Evolutionary Biology Commons

Dartmouth Digital Commons Citation

McPeek, Mark A.; Shen, Li; Torrey, John Z.; and Farid, Hany, "The Tempo and Mode of Three-Dimensional
Morphological Evolution in Male Reproductive Structures" (2008). Dartmouth Scholarship. 1257.
https://digitalcommons.dartmouth.edu/facoa/1257

This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has
been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital
Commons. For more information, please contact dartmouthdigitalcommons@groups.dartmouth.edu.


https://core.ac.uk/display/231121247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/facoa
https://digitalcommons.dartmouth.edu/faculty
https://digitalcommons.dartmouth.edu/facoa?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1257&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/facoa/1257?utm_source=digitalcommons.dartmouth.edu%2Ffacoa%2F1257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

VOL. 171, NO. 5 THE AMERICAN NATURALIST MAY 2008

E-ARTICLE

The Tempo and Mode of Three-Dimensional Morphological

Evolution in Male Reproductive Structures

Mark A. McPeek,"” Li Shen,’ John Z. Torrey,” and Hany Farid*

1. Department of Biological Sciences, Dartmouth College,
Hanover, New Hampshire 03755;

2. Division of Imaging Sciences, Department of Radiology, Indiana
University School of Medicine, Indianapolis, Indiana 46202;

3. Department of Ecology and Evolutionary Biology, Princeton
University, Princeton, New Jersey 08544;

4. Department of Computer Science, Dartmouth College,
Hanover, New Hampshire 03755

Submitted October 20, 2007; Accepted January 7, 2008;
Electronically published March 19, 2008

Online enhancement: zip file.

ABSTRACT: Various evolutionary forces may shape the evolution of
traits that influence the mating decisions of males and females. Phe-
notypic traits that males and females use to judge the species identify
of potential mates should evolve in a punctuated fashion, changing
significantly at the time of speciation but changing little between
speciation events. In contrast, traits experiencing sexual selection or
sexually antagonistic interactions are generally expected to change
continuously over time because of the directional selection pressures
imposed on one sex by the actions of the other. To test these hy-
potheses, we used spherical harmonic representations of the shapes
of male mating structures in reconstructions of the evolutionary
tempo of these structures across the history of the Enallagma dam-
selfly clade. Our analyses show that the evolution of these structures
is completely consistent with a punctuated model of evolutionary
change and a constant evolutionary rate throughout the clade’s his-
tory. In addition, no interpopulation variation in shape was detected
across the range of one species. These results indicate that male
mating structures in this genus are used primarily for identifying the
species of potential mates and experience little or no selection from
intraspecific sexual selection or sexual antagonism. The implications
of these results for speciation are discussed.

Keywords: mating structures, morphological evolution, punctuated
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To understand fundamental questions about species di-
versity, we must understand why individuals are the same
or different species. As codified by the biological species
concept (Mayr 1942), speciation in sexual organisms is at
its core the set of processes that generates reproductive
isolation among groups of individuals (Dobzhansky 1937,
1940; Mayr 1942). Reproductive isolation is generated by
the differentiation of myriad possible traits that may dis-
rupt mating, zygote formation, or offspring performance
between sets of individuals (Howard and Berlocher 1998;
Coyne and Orr 2004). Some species are reproductively
isolated from one another because they produce inviable
or infertile offspring (Noor and Feder 2006). Others are
reproductively isolated because of differences in proteins
that prevent gamete recognition or fusion (e.g., Swanson
and Vacquier 2002; Springer and Crespi 2007). Still others
will not mate with one another because of female dis-
crimination based on calls (e.g., Henry et al. 1999; Shaw
2000; Gerhardt 2005), pheromones (e.g., Blows 2002), be-
havioral repertoires (e.g., Boake 2002), or morphological
compatibility (Eberhard 1985; Shapiro and Porter 1989).
The evolution of traits involved in these reproductive iso-
lating mechanisms define the tempo and mode of speci-
ation that create biological diversity.

In many insects and other arthropods, morphological
features of genitalia and other reproductive structures are
thought to define reproductive compatibility (Eberhard
1985). In many arthropod taxa, species are defined by
morphological features of these reproductive structures
(Eberhard 1985), and these species definitions based on
morphological definitions typically stand the test of mo-
lecular data in defining species boundaries (e.g., Turgeon
et al. 2005). Such species specificity is thought to be in-
dicative of the role these structures play in enforcing re-
productive isolation and allowing males and females to
identify individuals as conspecifics or heterospecifics at the
time of mating (e.g., Paterson 1978, 1993; Templeton
1979). For example, the “lock-and-key” hypothesis (Du-
four 1844) postulates that the match or mismatch between
male and female reproductive structures enforces pre-
insemination reproductive isolation (Shapiro and Porter
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1989; Arnqvist 1997). If evolutionary changes in these
structures are the defining acts of creating new species and
they enforce reproductive isolation after differentiation,
they should show a characteristic pattern of evolution over
the history of a clade; namely, these characters should
change rapidly at the time of speciation but change little
between speciation events because of stabilizing selection
for species mate recognition (Eberhard 1985; Paterson
1993; Arngvist 1997; Hosken and Stockley 2003). Stabi-
lizing selection for mate recognition should also favor large
morphological differences between species relative to in-
traspecific differences (Gavrilets 2000; McPeek and Gav-
rilets 2006).

Although such evolutionary dynamics are usually pre-
sumed for these structures, these presumptions are based
more on inference than on explicit tests (Huber 2003).
For example, the fact that taxonomists can use these char-
acters to delineate species is often taken as evidence for
these dynamics (Eberhard 1985; Huber 2003). However,
other hypotheses have also been advanced to explain the
evolution of these traits, and these alternatives do not
necessarily imply such rapid evolutionary change associ-
ated with speciation events. The two most common al-
ternatives are sexual selection and sexually antagonistic
coevolution (Eberhard 1985, 2004, 2005; Andersson 1994;
Arngvist 1997). Both postulate that interspecific differ-
ences are simply an extension of the consequences of in-
traspecific interactions between or within the sexes. Sexual
selection via female choice or sperm competition among
males should favor particular features of male structures
that will increase male mating success (e.g., Eberhard 1985;
Andersson 1994; Bertin and Fairbairn 2005). Also, male
structures may be favored that exploit “sensory traps” of
females to increase their own mating success (e.g., Cor-
doba-Aguilar 2002). In contrast, sexually antagonistic co-
evolution postulates that male and female traits evolve in
an evolutionary arms race in which male characters evolve
to overcome female defenses to reduce copulations while
female traits evolve to elaborate these defenses (Arnqvist
et al. 2000; Arnqvist and Rowe 2005). Unlike species rec-
ognition, both of these hypotheses postulate that the dy-
namics of character change are a much more continuous
process of directional selection to elaborate these traits,
and the operation of these mechanisms is not restricted
to the period in which new species are formed (Andersson
1994; Arnqvist and Rowe 20024, 2000b).

These contrasting hypotheses for the evolution of gen-
italia and other sexual traits predict alternative tempos of
character evolution. Characters that are primarily species
identifiers to potential mates should show punctuated
character change at the time of speciation but change little
within lineages between speciation events because of
strong stabilizing selection imposed by species mate rec-
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ognition. In contrast, characters that experience strong
intraspecific sexual selection or sexual antagonism should
display a more continuous change over the history of a
clade because directional selection generated by these in-
teractions should operate nearly continuously. In this ar-
ticle, we test these conjectures for the male cerci—the
morphological structures that males use to grasp females
at the time of mating—of Enallagma damselflies (Odonata:
Coenagrionidae). Cerci are the diagnostic morphological
structures used to identify males to species (Westfall and
May 2006), and previous experimental results have shown
that females use cerci morphology to evaluate whether
males are suitable mates (Paulson 1974; Robertson and
Paterson 1982). To do this, we apply a new analytical meth-
odology, spherical harmonics, to quantify three-dimen-
sional shape variation in the cerci of 41 Enallagma species.
We then use modifications of evolutionary contrasts anal-
yses to reconstruct the tempo of evolutionary change in
shape across the history of the genus.

Study System

Enallagma is one of the most speciose genera of odonates
(Westfall and May 2006). The clade has 38 Nearctic species
distributed over North and South America and the Ca-
ribbean Islands and four Palearctic species that range from
north Africa and the Iberian Peninsula to Japan and the
Kamchatka Peninsula of Asia (Westfall and May 2006).
Previous phylogenetic analyses based on mtDNA se-
quences date the last common ancestor for the genus to
about 15 million years ago (Brown et al. 2000; McPeek
and Brown 2000; Turgeon et al. 2005).

Six clades with relatively distinct evolutionary histories
can be distinguished within the genus (fig. 1). The “hageni”
and “carunculatum” clades each radiated within the last
250,000 years. These radiations produced many species in
each that now have broad and overlapping ranges ex-
tending over much of North America and a few species
in each that are endemic to the Atlantic coastal plain (we
refer to these as the hageni and carunculatum clades be-
cause these species appear to be the progenitors of the
respective radiations; Turgeon et al. 2005). The four Pa-
learctic species are the result of a third radiation that is
sister to the hageni clade (Turgeon et al. 2005). These
Palearctic species have largely allopatric ranges.

Two other clades have much longer evolutionary his-
tories. The orange clade (adults of these species are shades
of red, orange, or yellow) contains three lineages that each
speciated within the same time period as the hageni and
carunculatum clades. Two of these lineages contain pairs
of species, one with a very large range covering much of
eastern North America (Enallagma signatum and Enal-
lagma vesperum) and the other an Atlantic coastal plain
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Figure 1: Phylogeny of the Enallagma damselflies taken from Turgeon et al. (2005). Branch lengths are proportional to time and have previously
been calibrated to molecular clock estimates for insect mitochondrial DNA evolution (see Turgeon et al. 2005 for methods). Each of the major
clades in the genus is identified to the right of the tree, and the names of extant species members are color coded.

endemic (Enallagma pollutum and Enallagma sulcatum).
The third contains three Atlantic coastal plain endemics.
The last common ancestor of the orange clade dates to
about 2 million years ago (McPeek and Brown 2000; Tur-
geon et al. 2005). The blue/black clade (adults of most of
these species are colored blue and black) is by far the
oldest, with its last common ancestor dating to about 13
million years ago (McPeek and Brown 2000; Turgeon et
al. 2005). Most of these species have ranges covering much
of eastern North America, with two (Enallagma pallidum
and Enallagma weewa) being Atlantic coastal plain en-
demics.

A sixth, Southwest clade contains Enallagma novaehis-
paniae, Enallagma eiseni, and Enallagma semicirculare in
the southwestern United States and Mexico; Enallagma
coecum in the Caribbean; and Enallagma cardenium in
Florida. We only have enough mtDNA data to place one
on the full Enallagma phylogeny (fig. 1), but smaller
mtDNA fragments place the other species with E. novae-
hispaniae (M. A. McPeek, unpublished data). One final
species (Enallagma truncatum) is endemic to Cuba, and
its phylogenetic affinity to these six clades is unknown.

Species that are scattered across the phylogeny interact
at lakes across North America. In eastern North America,



Morphological Evolution in Male Reproductive Structures

up to 12 species can be found at any one lake, and rep-
resentatives of the hageni, carunculatum, blue/black, and
orange clades are common at most (McPeek 1990, 1998).
Moreover, up to seven species can be breeding at a lake
on any one day (M. A. McPeek, unpublished data).

Enallagma have a fascinating breeding system. Females
spend almost all their time foraging away from ponds to
garner resources for egg production, and they only return
to ponds to oviposit (Fincke 1982). This minimizes their
exposure to male harassment and suggests an important
role for sexual conflict in the evolution of mate choice. In
contrast, males spend all their time at ponds searching for
females; males are not territorial. Thus, operational sex
ratios at ponds are highly skewed toward males (Fincke
1982, 1986a). When a female returns to oviposit, she is
swarmed by males of more than one species who struggle
to gain the proper hold on her to initiate mating. Females
are sometimes injured and occasionally even killed during
these male struggles. Males show little discrimination
among females of different species and thus will try to
gain control of females of most species (Paulson 1974;
Fincke et al. 2007). A single male wins control of a female
when he grasps her thorax with his terminal abdominal
appendages: two superior cerci and two inferior paraprocts
(fig. 2a). The male’s paraprocts grasp the posterior dorsal
surface of her prothorax, and the cerci grasp the anterior
dorsal surface of her mesothorax, including her mesostig-
mal plates. If she accepts him, the male bends his abdomen
and deposits sperm, which exits his body on the underside
of the ninth abdominal segment to his penis on the un-
derside of the second abdominal segment while he still
holds her. The female then bends her abdomen up to be
inseminated. During copulation, the male deposits his
sperm after using his penis to remove sperm of previous
matings (Waage 1979; Fincke 1984; Cérdoba-Aguilar et al.
2003). They then return to the water, where the male
releases her, and she climbs down a plant stem to oviposit
underwater (Fincke 1986b). A male cannot force a female
to bend her abdomen, and so females cannot be forcibly
inseminated—females exercise ultimate choice of their
mating partners (Fincke 1997).

The morphological shapes of the males’ cerci and the
females’ mesostigmal plates are the diagnostic structures
used by humans to identify individuals with species (West-
fall and May 2006). Damselflies also seem to use these
structures to identify one another with species during re-
production (Paulson 1974; Robertson and Paterson 1982).
Typically, a female will not mate with a heterospecific male,
and he will release her in less than 2 min (M. A. McPeek,
personal observation). Females also refuse conspecific
males with altered cerci just as they do heterospecific
males, but they show no preference between conspecific
males with surgically altered and unaltered paraprocts
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(Robertson and Paterson 1982). The specific mate rec-
ognition system driven by these structures appears to be
very efficient. A genetic survey of the 17 species in the
hageni and carunculatum clades using amplified fragment
length polymorphism (AFLP) loci found evidence for hy-
bridization between only two pairs of species: between
Enallagma hageni and Enallagma ebrium and between
Enallagma boreale and Enallagma annexum (Turgeon et al.
2005). All other species were mutually reproductively iso-
lated from one another. Thus, male cerci and female me-
sostigmal plates appear to be key components of premating
reproductive isolation among Enallagma species.

Material and Methods

For this study, we obtained specimens of all but two species
of the Enallagma damselfly clade (Odonata: Coenagrion-
idae; table A1). The only species we lacked were Enallagma
deserti from north Africa and Enallagma truncatum from
Cuba. Most specimens included in this study were origi-
nally preserved by drying. A few specimens were originally
preserved in ethanol; these ethanol-preserved specimens
were first dried at 60°C for 24 h and then included. We
found no difference in cerci morphology due to preser-
vation methods.

Quantifying Cerci Size and Shape

Each specimen was scanned using computer tomography
(CT) technology in a SkyScan 1172 high-resolution micro-
CT scanner (SkyScan, Kontich, Belgium). The abdomen
of a male was mounted on a brass stub using plastic tubing
and modeling clay and was placed in the scanner. Com-
puter tomography scans were made at a pixel resolution
of 2.5 um (i.e., voxel resolution of 15.6 um’) through 180°
with a rotation step of 0.7°/frame and averaging three
frames. Computer tomography scans were converted to
stacks of digital image slices using NRecon, version 1.4.4
(SkyScan).

The left and right cerci were segmented from the re-
sulting digital image stack, and initial processing was per-
formed using Amira, version 4.1.2 (Mercury Computer
Systems, Chelmsford, MA). All voxels associated with each
cercus were first identified using the editing and labeling
tools. Because we were only interested in reconstructing
the exoskeletal surfaces of the cerci, we closed off the an-
terior opening by adding a flat sheet of voxels and then
filling the volume. We did this so that our models only
reconstructed the outer surface of each cercus (see fig. 20,
anterior view). A high resolution triangular mesh surface
model of each structure was then constructed. For com-
putational purposes, each triangular mesh surface model
was reduced to have 10,000 triangles with 5,002 vertices.
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Figure 2: Computer-generated models of male damselfly structures derived from computer tomography scans. a, The four appendages at the end
of an Enallagma hageni male’s abdomen that he uses to grasp females before mating. The two superior appendages (cerci) contact the mesostigmal
plates of a female’s mesothorax. These are the structures used by females to identify males by species before mating. The two inferior appendages
(paraprocts) contact the females prothorax. b, The seven landmarks used to register cerci positions for analysis are identified with small dots on
the surface of the cerci of Enallagma ebrium. The left and right cerci are shown. The upper view is looking at the cerci from a view that is behind
the animal, and the lower view is looking at the same pair of cerci rotated so as to view the surfaces where the cerci are attached to the rest of the
body. ¢, The left image shows the raw data surface for the right cercus of Enallagma civile, and the right image shows the spherical harmonic model
generated from these data.
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The positions of seven landmarks were also identified on
each cercus (fig. 2b). Three landmarks (5-7) identified
proximal points on the cercal surface where it attaches to
the body. The other four (I-4) identify points on the distal
cercal surface (fig. 2b). These landmarks were used to reg-
ister cerci relative to one another.

We also used Amira to calculate three measures of “size”
for each cercus. A linear measure of size was calculated as
the longest length from the most proximal and axial land-
mark (5 in fig. 2b) to any of the four distal landmarks (1-
4). We also calculated the surface area and volume of each
cercus as two other measures of size.

We used spherical harmonics analyses of the triangular
mesh surfaces to quantify cerci shape (Shen and Makedon
2006). Spherical harmonics, an extension of the classic
Fourier transform, represent a three-dimensional (3-D)
shape in terms of a sum of 3-D sines and cosines on a
sphere (Brechbiihler et al. 1995; Ritchie and Kemp 1999;
Shen et al. 2007). We calculated the spherical harmonic
representation of each surface using the algorithms de-
scribed by Shen and Makedon (2006). Here, we provide
only a general overview of the methods; for a more detailed
description, consult Shen and Makedon (2006) and ref-
erences therein.

Spherical harmonics form a complete set of ortho-
normal functions (sines and cosines) and thus form a
vector space analogous to canonical basis vectors. On the
unit sphere, any square integrable function can be ex-
panded as a linear combination of these basis functions.
A 3-D surface is parameterized in polar coordinates in
terms of the functions x(0, ¢), ¥(0, ¢), and z(0, ¢) for
0, ¢ € [0, m]. Each of these functions is then expanded in
terms of the spherical harmonics Y as follows:

X0, 9) = >, D, a'y(0, ), (1)

I=0 m=—1

M
M~

y(0, ) = b"Y," (0, ¢), @

1

Il
S}

m=—1

o 1
26, ¢) = Z > Y0, 9, 3)
=0 m=

where the spherical harmonic basis functions are defined
as

Y"(6, ¢) = Ne"“R"(cos0), 4)

where N is a normalization constant and B” is a Legendre
polynomial. The coefficients a}", b/", and ¢" embody the
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contributions of different spatial frequencies to the un-
derlying surface and can be used to reconstruct the original
surface, compute the “distance” between two surfaces, and
morph from one shape to another. The coefficients are
estimated by solving a series of linear equations using
standard least squares estimation. These coefficients typ-
ically are complex numbers. Including higher-frequency
components (i.e., greater /) models greater detail of the
structure. These coefficients are estimated by solving a
series of linear equations using least squares methods. The
Enallagma cerci were modeled to degree | = 15, which
produces 256 (= [l + 1]2) coefficients to represent each
of the three dimensions for a total of 768 complex-valued
coefficients. These algorithms were coded and run using
Matlab, version 7.4.0.287 (MathWorks, Natick, MA); this
code is available from the authors on request.

Before estimating the spherical harmonic coefficients,
we standardized all cerci to a common length measure in
order to remove overall size from these representations.
We chose to standardize all cerci to a common length
measure, because the contact between male cerci and fe-
male mesostigmal plates depends on distances between
various points on the cerci, whereas total surface area and
volume have much less influence on the proper contacting
of these structures (M. A. McPeek, unpublished data). To
do this, we rescaled the 3-D positions of the vertices in
each triangular mesh so that the length measure used
above was 1.0. Using other measures to standardize for
size (e.g., using the distance between two landmarks con-
sistently, square root of surface area) did not, however,
alter the conclusions drawn from the analyses.

Intraspecific Variation

To assess the degree of intraspecific variation in cerci mor-
phology, we scanned 41 individuals from five populations
of E. hageni. These included 17 individuals from Love-
well Pond, Fryeburg, Maine (collected in June 1995:
N43°59.99', W70°56.14"); five individuals from Three
Lakes II, Richland, Michigan (collected in June 2000:
N42°20.95', W85°25.78"); nine from Deep Lake, Has-
tings, Michigan (collected in June 2001: N42°37.35’,
W85°27.43"); four from Blackhawk Lake Wildlife Man-
agement Area, Lake View, Iowa (collected in June 2001:
N42°17.72', W95°2.96'); and six from the Upper St. Croix
Lake, Solon Springs, Wisconsin (collected in July 2001:
N46°22.95", W91°46.87'). Individuals from the Maine,
Iowa, Wisconsin, and Deep Lake Michigan populations
were also photographed. Head widths, forewing lengths,
and abdomen lengths were measured from these photo-
graphs using Image-Pro Plus, version 6.2 (Media Cyber-
netics, Bethesda, MD).

We evaluated whether these populations of E. hageni



E164 The American Naturalist

differed in cerci size or shape using MANOVAs (Morrison
2004). One analysis included the three size measures (i.e.,
length, surface area, volume) as response variables, with
population as a random independent variable. We also
correlated these measures of cerci size with the other body
measurements. In order to reduce the dimensionality of
the spherical harmonic representation, we applied prin-
cipal components (PCs) analyses of the complex spherical
harmonic coefficients (PCs extracted from the covariance
matrix). We then performed a MANOVA on the first 10
PCs to test for shape differences among the populations.
Statistical analyses were performed using SAS for Win-
dows, version 8.02 (SAS Institute, Cary, NC).

Tempo of Cerci Evolution

Evolutionary contrasts analyses were then used to quantify
evolutionary rates of change in cerci shape by recon-
structing the spherical harmonic coefficients along the
phylogeny of the Enallagma. Standardized evolutionary
contrasts were calculated according to the algorithm first
expounded by Felsenstein (1973, 1985; see also Garland
et al. 1999; Rohlf 2001; Blomberg et al. 2003). A stan-
dardized evolutionary contrast is the difference in phe-
notype between two species that share an immediate com-
mon ancestor divided by the square root of the sum of
branch lengths leading from this common ancestor to
these two species. Branch lengths are meant to quantify a
measure of “time” that is appropriate for the evolution of
the character. Thus, a standardized evolutionary contrast
measures the rate (i.e., distance/time) of character evo-
lution in that portion of the phylogeny (Garland 1992;
McPeek 1995a, 1995b).

In this article, we introduce a new type of standardized
evolutionary contrast—the multivariate evolutionary con-
trast. In ordinary analyses, separate sets of contrasts are
calculated for each variable in the data set, and the co-
variance structure is maintained among the variables in
the set. Consider a set of n species for which a phylogeny
with branch lengths has been developed. For each of these
n species, two characters, X; and Y, (i indexes species
i=1, ..., n), have been measured. Standardized evolu-
tionary contrasts are calculated by taking the difference in
phenotype between pairs of species that share an imme-
diate common ancestor on the phylogeny and dividing
this difference by an estimate of evolutionary time (e.g.,
the square root of the sum of the branch lengths from
their most recent common ancestor if a model of Brownian
motion evolution is assumed). For example, if species 1
and 2 are sister species on the phylogeny and v, and v,
are the lengths of the respective branches leading from
their inferred common ancestor, the standardized evolu-

tionary contrasts for this species pair under the assumption
of Brownian motion character evolution are given by

_ X —X,
e+,

_n-y 5)
e+,

Note that the numerator (i.e., the “unstandardized”
contrast value) for each is a measure of the distance be-
tween the two species along each of the phenotypic axes,
but these measures also incorporate the direction of sub-
traction because they can be either positive or negative. A
phenotype is estimated for the node just below this pair
as a weighted average of their phenotypes, the weights
being the reciprocal of the branch lengths leading to each
species (Felsenstein 1985). This method is continued down
the tree, with some additional terms added to each sub-
sequent branch length for estimating ancestral phenotypes
(Felsenstein 1985), until a complete set of n — 1 stan-
dardized evolutionary contrasts are constructed from the
phenotypic data for the n species and their hypothesized
phylogeny. Constructing separate contrast sets for each
phenotypic variable in the data set allows the evolution of
covariation among individual traits to be examined as well
as the evolutionary rates of individual characters (Diaz-
Uriarte and Garland 1996; Rohlf 2001). Estimates of the
phenotypes for all internal nodes (i.e., hypothetical an-
cestors) in the phylogeny can also be constructed (see
Rohlf 2001).

However, for high-dimensional data sets such as that
resulting from the spherical harmonic representation of
morphological shape, the covariation among hundreds of
characters is not as interesting as quantifying the overall
rate of evolution of the structure. Remember that the nu-
merator of a standardized evolutionary contrast is the phe-
notypic distance between two species. Thus, standardized
evolutionary contrasts as metrics of the overall rate of
evolution in the character set can be calculated using the
distance among species’ phenotypes on all characters si-
multaneously (Klingenberg and Ekau 1996). Note that this
overall measure ignores information about the direction
of evolution. Returning to our two-character example
above, if X and Y are orthogonal characters, the stan-
dardized evolutionary contrast that quantifies the total rate
of evolution in the phenotypes of 1 and 2, since their last
common ancestor, is

X = X))+ (Y - 1)

©)

12 T
o, T 0,
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Note that like E, and E, , M, is a rate of evolution
(i.e., distance/time), but it is a rate of total change in all
traits simultaneously. This concept of a multivariate con-
trast can be extended to any number of phenotypic traits
by simply calculating the appropriate distance measure
among the species—in this case Euclidian distance is used
(Klingenberg and Ekau 1996). The rest of the algorithm
for constructing standardized evolutionary contrasts is
conducted exactly as in the typical analysis. The hypo-
thetical phenotypes associated with ancestral nodes are
calculated for each character, and then the distances be-
tween them are calculated to construct the multivariate
contrasts. Euclidian distances can be calculated directly if
the characters are orthogonal to one another, as with the
spherical harmonics, because the spherical harmonic func-
tions form an orthogonal basis for shape. Otherwise, some
transformation of the data must be applied to construct
a set of orthogonal characters from the original data (e.g.,
PCs). Multidimensional measures of evolutionary rates
and evaluations of rate heterogeneity (e.g., Freckleton et
al. 2002; O’Meara et al. 2006) can also be calculated using
the same shift to distances in a multidimensional space.

By choosing the appropriate scaling of branch lengths,
one can test various models of evolution (Martins and
Garland 1991; Hansen and Martins 1996; Pagel 1997,
1999). Under the assumption of Brownian motion evo-
lution, the variance in the phenotypic distance between
two taxa should increase linearly with the time since their
common ancestor (Felsenstein 1985). Thus, greater dis-
tances are expected between species that have been sep-
arated for longer periods of time, and a regression of the
distance between species (i.e., the numerator) against the
branch length estimates of time (i.e., denominator) in the
evolutionary contrasts should give a line with a positive
slope (cf. Garland et al. 1992). Additionally, regressing the
standardized evolutionary contrast values against their de-
nominators should show no relationship (Garland et al.
1992). In contrast, if character change is punctuated at the
time of speciation, the distance between two species should
be independent of the amount of time they have been
separated, and so a regression of the distances between
species against the branch length estimates of time in their
associated evolutionary contrasts should show no rela-
tionship. Additionally, regressing the values of standard-
ized evolutionary contrasts calculated by assuming all
branch lengths are 1.0 against the associated branch
lengths that are proportional to time should show no re-
lationship, because the rate of phenotypic change esti-
mated by the contrasts depends on the number of spe-
ciation events and not time. Obviously, these tests assume
that the model of character evolution and rates of change
under that model are homogeneous across the phylogeny.

A different approach to evaluating the evolutionary
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model most consistent with the character distribution is
to estimate « in a maximum likelihood framework (Pagel
1997, 1999; Freckleton et al. 2002). In this approach, each
branch in the tree is raised to the power of k; the k value
that maximizes the overall likelihood of the phenotypic
data is found using standard search algorithms (Besset
2001). A value of k = 1.0 is consistent with continuous
character change under Brownian motion, and ¥k = 0.0 is
consistent with punctuated change at the time of specia-
tion. To search for k, we used the multivariate distance
between each species and the hypothetical phenotype for
the root node of the phylogeny as the phenotypic metric
to calculate the likelihood value for a given « (see eq. [4]
of Freckleton et al. 2002). The phylogenetic root phenotype
and evolutionary rate estimates were recalculated for each
k value being evaluated.

Reconstructions used the Enallagma phylogeny pre-
sented in figure 1 (McPeek and Brown 2000; Turgeon et
al. 2005). All polytomies were assumed to be hard poly-
tomies (Purvis and Garland 1993; Rohlf 2001); for the
evolutionary contrast analyses, we resolved polytomies in
the hageni and carunculatum clades into dichotomous
branches according to the resolution in the AFLP analyses
of these two clades presented by Turgeon et al. (2005).
Other polytomies in the phylogeny were arbitrarily re-
solved. All branch lengths in polytomies were set to 0 for
all analyses (Purvis and Garland 1993; Rohlf 2001). We
used the “censured” method of O’Meara et al. (2006) to
estimate rates of character change and test for rate het-
erogeneity among the five major Enallagma clades for
which we had more than one species (i.e., excluding the
Southwest clade). All evolutionary analyses were per-
formed by a program written in Java 1.5 (Sun Microsys-
tems, Santa Clara, CA) and available from M. A. McPeek
upon request.

Identical sets of analyses were performed on the right
and left cerci. Because these structures are bilaterally sym-
metrical with one another, the results of these analyses
were almost identical. Therefore, we present results only
for the right cerci.

Results
Intraspecific Variation

The first 10 PCs extracted from the spherical harmonic
coefficients of 41 Enallagma hageni individuals accounted
for 78.2% of the total variation in cerci shape. The resulting
PCs scores are complex numbers, but the imaginary parts
of scores for the first 10 PCs were infinitesimal (on the
order of 1077) relative to the real parts (on the order of
10°~107?). Therefore, we consider that only the real parts
of PC scores in this ordination maintain the lower di-
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mensionality. Figure 3a illustrates the degree of overlap in
cerci shape among the five populations for the first two
PCs, and the remaining PCs show similar degrees of over-
lap among populations. The MANOVA of these 10 PCs
detected no differences among the five populations from
which these individuals were taken (Wilks’s A approxi-
mation, F = 0.30, df = 40, 104, P> .50).

Unlike shape, cerci size did vary significantly among
populations (MANOVA of cerci length, surface area, and
volume: F = 4.30, df = 9,85, P<.001). These popula-
tions also differed in the measures of overall body size
(MANOVA of head width, forewing length, and abdomen
length: F = 3.89, df = 9,61, P<.001), and the measures
of cerci size were all positively correlated with the body
size measures (Pearson correlations all with P < .05). Thus,
cerci size differences reflect individual differences in overall
body size, whereas shape appears to be invariant across
populations.

Intraspecific shape variation was also much lower in
general than differences among species. The intraspecific
pairwise distances among E. hageni individuals in
the spherical harmonic space averaged 0.14 * 0.03
(mean = 1 SD, N = 595). In contrast, the interspecific
pairwise distances among the 41 individual specimens for
each Enallagma species averaged 047 * 0.14 (mean * 1
SD, N = 820; fig. 3b). Only the distances between five
species pairs overlapped with the intraspecific distribution
(fig. 3b). These were all allopatric species pairs: the Asian
Enallagma circulatum was close to both of the North Amer-
ican Enallagma boreale and Enallagma laterale; one pair
has one species in Florida (Enallagma cardenium) and one
in the Caribbean (Enallagma coecum); the species of one
pair are on disjunct parts of the Atlantic coastal plain
(Enallagma pictum and Enallagma concisum); and the last
pair included the southwestern Enallagma eiseni and the
North American Enallagma basidens.

Tempo and Mode of Cerci Evolution

Because the intraspecific distances are generally much
shorter than interspecific distances, and because cerci
shape is independent of body size and does not vary among
populations for E. hageni, we assume that the specimen
included in the interspecific analyses for each species is
characteristic of the cerci phenotype of that species (Har-
mon and Losos 2005). Also, because cerci size appears to
change with overall body size, we do not present an in-
terspecific analysis of size evolution.

To visualize the positions of species relative to one an-
other in the high-dimensional spherical harmonic space,
we again ordinated species based on their spherical har-
monic coefficients using a PCs analysis of the complex
spherical harmonic coefficients (extracted from the co-
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Figure 3: Results of the (a) ordination of the first two intraspecific shape
principal component scores for individuals from five Enallagma hageni
populations and (b) frequency histograms of the pairwise distances be-
tween the specimens of all species included in the interspecific analysis
(top) and the pairwise distances between individuals of E. hageni in the
five populations (bottom).

variance matrix). Again, the imaginary parts of species
scores for the first several PCs were infinitesimal (on the
order of 1077) relative to the real parts (on the order of
10°~107?). We consider only the real parts of the PC scores
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in this ordination to maintain the dimensionality at three.
The first three PC axes accounted for 71.5% of the vari-
ation among the species. Lower frequencies in the spherical
harmonics account for most of the variation along these
PC axes (fig. 4).

Patterns of PC loadings are not directly interpretable as
differences in specific shape features, but back projection
of the spherical harmonic model along the PC axes allowed
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us to interpret shape differences characterized by each axis.
All Enallagma cerci can be interpreted as variations on the
basic shape of a two-tined fork (identified by landmarks
1-4 for Enallagma ebrium in fig. 2b), with differences
among species being variations on the lengths, thicknesses,
and angles of the tines. The PC1 quantified a shift from
the superior tine being long relative to the inferior tine
and the inferior tine projecting down (more negative val-
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Figure 4: Magnitudes of the principal component (PC) coefficients of the first 40 spherical harmonic coefficients for each of the x, y, and z

dimensions for the first three PCs of shape.
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ues) to the superior and inferior tines being small and
relatively indistinct from one another (more positive val-
ues; fig. 5). The PC2 quantified a shift from cerci with a
long superior tine and a very short and ventral projecting
inferior tine (more negative values) to cerci with a short
superior tine and a long but tapered inferior tine (fig. 5).
The PC3 quantified a shift from a cercus with both tines
relatively small (more negative values) to a cercus with a
broad inferior tine (more positive values; fig. 5). The PC4
accounted for only 4.0% of the variation. The clades were
significantly displaced from one another in this 3-D re-
duced space (MANOVA on the first three PCs: Wilk’s A
approximation, F = 6.46, df = 15,92, P<.001).

While the clades differ in average shape today, multi-
variate standardized evolutionary contrasts analyses in-
dicated that they developed those patterns by similar tem-
pos and modes of evolution. First, no relationship was
apparent between unstandardized evolutionary contrast
values (i.e., the distances between the pairs of species) and
the associated branch lengths that are proportional to time
(r = 0.13, df = 35, P> 45; fig. 6a). Also, no relationship
with branch length was apparent when multivariate con-
trasts were standardized by the number of speciation
events, whereas a strong negative power relationship was
apparent when they were standardized by branch lengths
(fig. 6b). Finally, the maximum likelihood estimate of «
was 4.3 x 1077 (log L = 21.2). These results are all con-
sistent with the evolution of cerci shape following a model
of punctuated change at the time of speciation.

Assuming punctuated change, we also tested for evo-
lutionary rate heterogeneity among the five clades using
the multivariate shape contrasts (table 1). Comparisons
using traditional ANOVA and the multivariate standard-
ized evolutionary contrasts as the raw data indicated no
differences among the five clades included in the analyses
(F = 2.03, df = 4,27, P> .10). Also, a model assuming
the same evolutionary rate of shape change across all clades
was favored over a model assuming a separate rate for
each clade (likelihood ratio test: x> = 3.31, df = 4, P>
45; also, the model with a single rate for all clades had
an Akaike Information Criterion (AIC.) = 4.61, and the
model with separate rates for each clade had AIC. =
17.9).

Estimates for the real and imaginary parts of the spher-
ical harmonic coefficients were used to reconstruct the
phenotypes of the hypothetical ancestors throughout the
Enallagma phylogeny (fig. 7); a zip file available in the
online edition of the American Naturalist presents inter-
active 3-D views of all the species and ancestral models.
The hypothetical phenotypes of the last common ancestors
of the Palearctic and hageni clades are very similar, with
each being broad relative to length and having very in-
distinct and short superior and inferior tines. The hypo-

thetical phenotype of the orange clade ancestor has a rel-
atively long and narrow cercus, because the inferior tine
is very short, downturned, and quite broad (almost the
entire ventral surface can be interpreted as the tip of the
inferior tine). The hypothetical phenotype of the carun-
culatum and blue/black clades have broad superior tines
and more narrow and ventrally pointing inferior tines.
Interestingly, the last common ancestors of the two pri-
mary clades in the genus have very similar hypothetical
phenotypes that are similar to the carunculatum and blue/
black clade ancestors. We take this as evidence of no biases
or trends in cerci shape evolution. As a result, the hy-
pothetical phenotype for the root node of the phylogeny
also has a relatively broad superior tine and a more narrow
and ventrally pointing inferior tine.

Discussion

Traits associated with generating and maintaining repro-
ductive isolation through species mate recognition are ex-
pected to change at the time of speciation (i.e., when re-
productive isolation is generated) but to change little in
intervening periods (Templeton 1979; Paterson 1993).
Rapid change at the time of speciation is obvious by def-
inition, because it is change in these traits that generates
reproductive isolation. Moreover, many mechanisms may
cause rapid diversification in such traits, for example,
founder events (Templeton 1979; Carson and Templeton
1984) or species interactions (Payne and Krakauer 1997;
Gavrilets 2004; McPeek and Gavrilets 2006). However,
once lineages have differentiated sufficiently and individ-
uals can unambiguously discriminate potential mates as
conspecifics or heterospecifics, the rate of character change
should slow appreciably (McPeek and Gavrilets 2006). In
fact, interspecific mate choice and recognition is expected
to impose strong stabilizing selection on these characters
in both males and females, since extreme phenotypes
would be less likely to obtain viable matings (Lande 1981,
1982; Sved 19814, 1981b; Kirkpatrick 1982). This scenario
of selection on traits defining reproductive isolation thus
predicts that patterns of interspecific character evolution
should follow a model of punctuated change that should
be consistent with the number of speciation events in the
clade.

Our analyses of the tempo and mode of cerci shape
evolution strongly support this model of punctuated
change at the time of speciation as constructing the extant
diversity in cerci types among the Enallagma damselflies.
Multivariate evolutionary contrasts standardized by
branch lengths all set to 1 showed no relationship with
genetic distances between the pairs of species involved (fig.
6). This result would obtain if the degree of phenotypic
differentiation generated at the time of speciation were
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relatively constant across the entire phylogeny. In contrast,
multivariate evolutionary contrasts standardized by branch
lengths based on genetic distances, and thus assumed pro-
portional to the time species have been separated, showed
much larger values for contrasts involving shorter
branches: this is the relationship expected if a constant
amount of phenotypic difference is divided by increasingly
larger numbers for branch lengths (fig. 6b for Brownian
motion). In addition, the maximum likelihood estimate
of k being on the order of 107° also argues strongly for
the punctuated model of character change. Rate homo-
geneity across the entire phylogeny was also the most likely
model of cerci shape change (table 1). Moreover, no in-
traspecific differentiation between widely spaced popula-
tions was evident for at least one species.

These results are even more striking when the relative
ages of the various Enallagma clades are considered. The
radiations of the Palearctic, hageni, and carunculatum pro-

genitors that resulted in 21 extant species all appear to
have occurred within the last 250,000 years (Turgeon et
al. 2005). The orange clade is somewhat older at ~2 million
years. However, the blue/black clade extends back to nearly
the time of the last common ancestor of the entire genus
at ~13 million years, with some species being apparently
very old (fig. 1). With Brownian motion evolution, trait
variance among species within a clade is expected to in-
crease linearly with time (Felsenstein 1985). Thus, with
continuous character change, the variance among species
in the blue/black clade is expected to be approximately 52
times greater than in any of the three recently radiating
clades. Despite these vast differences in the crown group
ages of the various clades, the volumes of phenotype space
occupied by the six clades are all very similar (e.g., fig. 5),
as expected under a punctuated model of evolution. These
results taken together all argue that throughout the history
of the Enallagma, cerci shape has rapidly differentiated at
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the time of speciation by a relatively constant amount and
has changed little if at all until the next speciation event
in a lineage.

These are the evolutionary dynamics expected for a
structure that is part of a species mate recognition system
(Templeton 1979; Paterson 1993). Enallagma males are
very promiscuous and will attempt to mate with most

Enallagma females regardless of species (Paulson 1974;
Robertson and Paterson 1982; Fincke et al. 2007). Exper-
iments suggest that females use tactile cues caused by the
contact of the cerci with the female’s mesostigmal thoracic
plates to identify suitable mates. Conspecific males with
experimentally altered cerci are rejected by females just as
heterospecific males are rejected, but females mate with
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Table 1: Evolutionary rate estimates for the cerci shape
analyses

Clade Species richness  Shape multivariate 0*
Palearctic 3 .029
“hageni” 10 .056
“carunculatum” 7 .035
Blue/black 8 .078
Orange 7 .030
Entire genus 37 .052

Note: Rate estimates derived using the censured method of O’Meara
et al. (2006). The “Shape multivariate” column gives rate estimates de-
rived for the multivariate contrasts of the spherical harmonic coefficients
of shape. The first five rows of the table give the rate estimates assuming
that each of the five major clades included in the analysis have separate
rates. The last row (“Entire genus”) is the rate estimate derived assuming
that all clades have the same evolutionary rate. Rate estimates are cal-
culated using equation (2) of O’Meara et al. (2006).

conspecific males with intact cerci (Robertson and Pat-
erson 1982). The evolutionary dynamics of cerci shape are
consistent with females using these tactile cues primarily
to categorize males as conspecifics or heterospecifics and
not as a more subtle indicator of male quality, as would
be expected in various forms of sexual selection. Also, these
dynamics are not consistent with an evolutionary arms
race in which the shape of the female mesostigmal plates
are evolving as defenses against being grasped and con-
trolled by the male cerci (cf. Arnqvist and Rowe 20024,
2002b). We are currently repeating these types of analyses
with the female mesostigmal plates and developing meth-
ods to quantify the fit between these male and female
structures in conspecific and heterospecific matings to dig-
itally estimate what females feel during matings with dif-
ferent males. We predict that the female plates will show
the same evolutionary dynamics as male cerci and that
these structures will display all the characteristics expected
in a lock-and-key species mate recognition system (Sha-
piro and Porter 1989; Arnqvist 1997), even though these
are not genitalia.

Enallagma lacks the conspicuous wing markings and
other features on which sexual selection via female choice
has been shown to operate in other odonates (e.g., Koenig
1991; Grether 1996; Svensson et al. 2006). However, the
stabilizing selection imposed by female mate choice on
cerci shape may indirectly impose some degree of stabi-
lizing sexual selection on male body size. If each female
has a mate preference function (Lande 1981; Sved 19814,
1981b; Kirkpatrick 1982) that defines an optimal tactile
sensation to accept males as mates, males that are farther
from a female’s tactile optimum will be less likely to mate.
Heterospecific males that possess very different cerci from
conspecifics will generate tactile sensations that are far
from her preference optimum and thus will be quickly
rejected—this is the basis of species recognition. In ad-

dition, the tactile sensations that any particular female feels
when she is grasped by conspecific males of various sizes
will also depend on the fit between the males’ cerci and
her thoracic plates. Because cerci size scales with overall
body size (at least for Enallagma hageni), males of more
extreme sizes may be less likely to mate with a particular
female because the sizes of their cerci also generate tactile
sensations farther from her preference optimum. Consis-
tent with this prediction, we have quantified stabilizing
sexual selection for male size in a population of Enallagma
aspersum (D. Steele and M. A. McPeek, unpublished ar-
ticle; see also Stoks 2000 for another example of stabilizing
sexual selection on body size in a damselfly species). In-
traspecific sexual selection may thus play some role in the
evolutionary dynamics of cerci size and thus indirectly on
overall body size.

The literature is quite mixed about the relative impor-
tance of various mechanisms in shaping the evolution of
genitalia and other sexual structures such as the cerci and
mesostigmal plates of damselflies. In arthropods, a lock-
and-key mechanism of genital fit (Dufour 1844) is thought
to enforce reproductive isolation in many taxa because of
the taxonomic utility of genital morphologies in these
groups. However, the hypothesis has fared poorly in em-
pirical tests (e.g., Eberhard 2005; Mutanen et al. 2006; see
Shapiro and Porter 1989 for a general review). Fisherian
runaway sexual selection is expected to produce positive
allometric scalings of sexual parts, but taxa show a wide
diversity of allometric scaling patterns of sexual traits (re-
viewed in Hosken and Stockley 2003). However, the al-
lometric scaling expected for sexual traits may be more
complicated than simple models would predict (Bondu-
riansky 2007), and emergent intraspecific allometry may
not even coincide with those predicted from the form of
selection (e.g., directional versus stabilizing) acting on a
structure (Bertin and Fairbairn 2007). Other methods of
analysis have also identified sexual selection on genital
morphology, but again, not universally (e.g., Arnqvist
1998; Polihronakis 2006). Similarly, sexually antagonistic
coevolution of male and female sexual traits shapes in-
terspecific variation in some taxa (Arnqvist and Rowe
20024, 2002b) but not others (e.g., Eberhard 2004, 2005).

If Enallagma cerci evolution is driven primarily by spe-
cies mate recognition and not by sexual selection or sexual
antagonism, why does cerci shape differentiate to create
new species at all? Often, such mechanisms of premating
reproductive isolation are thought to evolve to reduce the
costs of producing less viable or less fertile hybrids from
mating with individuals in lineages that are already par-
tially differentiated from the species in question (Kelly and
Noor 1996; Kirkpatrick and Servedio 1999; Kirkpatrick
2000, 2001). This “reinforcement” of preexisting post-
mating differentiation has probably not been important
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Figure 7: Ancestral cerci shapes for the various clade ancestors derived from the ancestral reconstructions of spherical harmonic coefficients in the
evolutionary contrasts analyses assuming a punctuated model of character evolution. Left and right cerci are shown for each ancestor, and cerci
pairs are placed either under or immediately adjacent to the corresponding node of the phylogeny. The view of each pair is at an oblique angle
from the rear, with the left cercus to the left (the viewer can see the outer surface of the left cercus) and the right cercus to the right (the viewer
can see the inner surface of the right cercus). Interactive 3-D views of all species and ancestral models can be found in a zip file available in the

online edition of the American Naturalist.

in Enallagma. For example, many of the species within
each of the three recent radiations share identical 1,000-
bp haplotypes spanning the cytochrome oxidase I and 1II
genes in the mitochondrial genome (e.g., some haplotypes
are found in up to five species), and overall species show
little or no interspecific differentiation in mtDNA se-
quences within radiations, but almost all are differentiated
at much more rapidly evolving AFLP loci (Turgeon et al.

2005). The facts that (1) mitochondrial genes are some of
the most rapidly evolving genes in animals and (2) many
of the species within each radiation are difficult to distin-
guish except for their cerci and mesostigmal plates suggest
that species within each radiation may be genetically quite
compatible with one another and would show no degree
of hybrid inviability or infertility were they to interbreed.
Thus, these species probably have had no impetus to evolve
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prereproductive isolating mechanisms to reduce or prevent
hybridization with others during the radiation.

Cerci differentiation also cannot be completely ex-
plained as a correlated by-product of ecological differen-
tiation (Rice and Hostern 1993; Gavrilets 2004). In the
two recent North American radiations, four different spe-
ciation events appear to be the product of ecological spe-
ciation. Three of these (one in the hageni clade and two
in the carunculatum clade) were independent habitat shifts
in which lineages invaded and adapted to living with drag-
onfly predators in fishless ponds, a new habitat for the
Enallagma because the rest of the species in the genus are
adapted to living only in ponds and lakes with fish
(McPeek 1990, 1995b, 1998, 1999; McPeek et al. 1996;
McPeek and Brown 2000; Turgeon et al. 2005; Stoks and
McPeek 2006). The other produced a lineage that is now
endemic to the Atlantic coastal plain; presumably, this
lineage adapted to ecological conditions specific to coastal
plain lakes with fish (e.g., perhaps physiological adaptation
to lake water chemistry under oceanic influences; Turgeon
et al. 2005).

However, the remaining 11 speciation events in these
two clades have no clear ecological explanations. For ex-
ample, the lineage that shifted onto the coastal plain sub-
sequently underwent three additional branching events to
produce four endemic species, all of which are phenotyp-
ically identical as larvae and adults, except for their cerci
(Stoks et al. 2003; McPeek 2004; Stoks and McPeek 2006),
and all are locally sympatric where their ranges overlap
(M. A. McPeek, unpublished data). Similarly, one of the
lineages that adapted to dragonfly ponds subsequently un-
derwent a second speciation event after the shift to pro-
duce two species (Enallagma annexum and Enallagma bo-
reale) that are phenotypically identical, again except for
their cerci (Stoks et al. 2003; McPeek 2004; Stoks and
McPeek 2006), and that can now be found together in
these ponds from the Atlantic to the Pacific oceans (Stoks
et al. 2005; M. A. McPeek, unpublished data). Finally, the
remaining nine species in the two clades are also phe-
notypically very similar (McPeek 2004; Stoks and McPeek
2006), have large and overlapping distributions (Westfall
and May 2006), and can be found locally sympatric in fish
ponds and lakes across the continent (M. A. McPeek, un-
published data). Thus, the majority of the speciation events
in these two radiations seems to have been caused directly
by the coordinated differentiation of male cerci and female
thoracic plates.

Biogeographic and phylogeographic data suggest that
the mechanisms driving differentiation in the species mate
recognition systems in these radiations were associated
with the periodic Pleistocene glacial advances and retreats.
Most species in the two recent North American radiations
currently have ranges that would have been completely

under ice at the last glacial maximum (Donnelly 2004).
Most species in both radiations also bear striking phylo-
geographic signatures of either range fragmentations and
expansions (Turgeon et al. 2005). Fragmentation of spe-
cies’ ranges caused by glacial advance may have caused
local genetic bottlenecks that generated differentiation in
the cerci and thoracic plate morphologies among the range
fragments to create new species (e.g., Templeton 1979;
Lande 1981; Carson and Templeton 1984). Rapid range
expansions as glaciers retreated could also have generated
genetic drift in these characters to make new species
(Carson and Templeton 1984; Gavrilets and Boake 1998;
Regan et al. 2003).

In addition, we have identified two areas in North
America where unidirectional mitochondrial hybridization
occurred briefly in the recent past between members of
the two clades (New England and northern California;
Turgeon et al. 2005). Unidirectional mitochondrial hy-
bridization is frequently seen when females of one species
are locally rare and cannot find conspecific males, and
they eventually acquiesce to mating with males of the lo-
cally common species (Wirtz 1999; Randler 2002). Such
social situations would have been quite common across
the entire continent as species colonized newly formed
lakes in newly deglaciated areas; because local population
sizes can be on the order of 10°~10 at a given lake, females
of later-arriving species to a given lake would have ex-
perienced primarily heterospecific males until their pop-
ulation numbers increased substantially. These social con-
ditions can also impose strong selection on female mating
preferences to differentiate rapidly among populations that
are interacting with different sets of species (Hoskin et al.
2005; Pfennig and Pfennig 2005; McPeek and Gavrilets
2006). Recolonizing deglaciated areas may have thus di-
rectly imposed substantial selection for differentiation in
species mate recognition.

Clearly, no single evolutionary force shapes the evolu-
tion of sexual traits across all animals, and in fact, sexual
structures in many taxa may simultaneously experience
selection pressures from all these evolutionary forces to
varying degrees (Arnqvist 1997; Hosken and Stockley 2003;
Cordero and Eberhard 2005). Theoretical representations
are beginning to understand intraspecific mate choice and
species recognition as lying along a continuum (Boake et
al. 1997; Castellano and Cermelli 2006; Phelps et al. 2006).
Because the evolution of species recognition is one sub-
stantial way that reproductive isolation is generated among
lineages, the evolution of characters shaping intraspecific
and interspecific mate choice are fundamental to under-
standing the generation and maintenance of species di-
versity patterns in many groups.
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APPENDIX

Table Al: Locality and collection date for the Enallagma specimens included in the interspecific analysis of cerci shape

Genus and species

Location

Date collected

Enallagma anna
Enallagma annexum
Enallagma antennatum
Enallagma aspersum
Enallagma basidens
Enallagma boreale
Enallagma cardenium
Enallagma carunculatum

Enallagma circulatum
Enallagma civile

Enallagma clausum

Enallagma coecum
Enallagma concisum

Enallagma cyathigerum
Enallagma daeckii
Enallagma davisi
Enallagma divagans
Enallagma doubledayi

Enallagma dubium
Enallagma durum
Enallagma ebrium
Enallagma eiseni

Enallagma exsulans
Enallagma geminatum
Enallagma hageni
Enallagma laterale
Enallagma minusculum
Enallagma novaehispaniae
Enallagma pallidum
Enallagma pictum
Enallagma pollutum

Enallagma recurvatum

Enallagma risi

Bloody Creek and County Line Road, Loup Co., Nebraska

Sylvester Pond, Norwich, Vermont

Chemung River, Bottcher’s Landing, Big Flats, Chemung Co., New York

Pond “8,” Enfield Corner’s Road, Enfield, Tompkins Co., New York

San Sabo River, 0.7 miles. northeast of Fort McKavitte, Menard Co., Texas

Colton, 3 miles southwest of Orebed Road, St. Lawrence Co., New York

Chicken Branch, County Road 154, Tallahassee, Leon Co., Florida

Milburn Diversion Dam State Wildlife Management Area, 2 miles north-
west of Milburn, Blaine Co., Nebraska

Lake Aliger, Kuril Island, Kunashir, Russia

Lewis Ocean Bay Heritage Preserve, 9 miles east-southeast of Conway,
Horry Co., South Carolina

Bear River Migratory Bird Refuge, 13 miles west of Brigham City, Box El-
der Co., Utah

Basse-Terra Riviere de Beugendre northeast of Marigot, Guadeloupe

Marsh 1.5 miles North of entrance to Blackwater River State Park, Santa
Rosa Co., Florida

Zwart Water, Belgium

Blackwater River State Park, Santa Rosa Co., Florida

Dog Lake, Tallahassee, Florida

Adams Spring Branch and Indian Fork Road, Santa Rosa Co., Florida

Lewis Ocean Bay Heritage Preserve, 9 miles east-southeast Conway, Horry
Co., South Carolina

Trout Pond, State Road 373, Tallahassee, Florida

Canal on Ferry Road, Old Sambrook, Connecticut

Colton, 3 miles southwest of Orebed Road, St. Lawrence Co., New York

Sur, Pond at Rancho San Enrique, 51 km east of Villa Insurgentes, Baja
California, Mexico

Genesee River and Cronk Hill Road, Hume, Allegany Co., New York

Stone Mill Pond, Madison Co., New York

Palmatier Lake, Hastings, Michigan

Perley Pond, Sebago, Maine

Norton Pond, 4 miles east of Brownville Junction, Piscataquis Co., Maine

Domatila new Rio Dorado, Granada Department, Nicaragua

Trout Pond, State Road 373, Tallahassee, Florida

Whitesbog, Lebanon State Forest, Burlington Co., New Jersey

Francis S. Taylor Wildlife Management Area at Route 41, 12 miles west of
Route 997, Dade Co., Florida

Cedar Lake, State Road 347 and 550 Spur, Bellplain State Forest, Cape
May Co., New Jersey

Manzhouli, China

July 20, 2005
June 12, 2007
July 3, 2004
July 1, 2003
July 15, 2001
June 5, 2005
April 17, 2006
July 18, 2005

August 26, 1996
August 30, 2005

June 27, 1905

January 29, 2006
April 12, 2004

July 26, 1999
April 13, 2004
March 26, 1995
April 12, 2004
August 29, 2005

May 14, 1995
July 7, 2001
June 5, 2005
October 4, 1984

July 15, 2003
July 14, 1999
June 17, 2001
June 24, 1995
June 26, 1987
August 27, 2003
May 14, 1995
June 8, 1991
April 3, 2005

May 22, 1995

July 23, 1999
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Table Al (Continued)

Genus and species

Location

Date collected

Enallagma semicirculare
guna Azul, Veracruz, Mexico
Enallagma signatum
Enallagma sulcatum
Enallagma traviatum
Enallagma vernale
Enallagma weewa

Lake Alto, Waldo, Florida

Los Tuxtlas Biological Station, 30 km north-northeast of Catemaco, La-
Roger Nature Center, Sherbourne, Chenango Co., New York
Pond “18,” County Road 6, Hector, Schyler Co., New York

McDaniels Marsh, Enfield, New Hampshire
Burnt Mill Creek, US 27 east of Tallahassee, Florida

August 27, 1988

July 13, 1999
April 18, 1990
July 1, 2002
June 11, 2007
May 14, 1995
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