7 research outputs found

    Thermoelectric Properties of Flexible PEDOT:PSS/Polypyrrole/Paper Nanocomposite Films

    No full text
    Flexible poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polypyrrole/paper (PEDOT:PSS/PPy/paper) thermoelectric (TE) nanocomposite films were prepared by a two-step method: first, PPy/paper nanocomposite films were prepared by an in situ chemical polymerization process, and second, PEDOT:PSS/PPy/paper TE composite films were fabricated by coating the as-prepared PPy/paper nanocomposite films using a dimethyl sulfoxide-doped PEDOT:PSS solution. Both the electrical conductivity and the Seebeck coefficient of the PEDOT:PSS/PPy/paper TE nanocomposite films were greatly enhanced from 0.06 S/cm to ~0.365 S/cm, and from 5.44 μV/K to ~16.0 μV/K at ~300 K, respectively, when compared to the PPy/paper TE nanocomposite films. The thermal conductivity of the PEDOT:PSS/PPy/paper composite film (0.1522 Wm−1K−1 at ~300 K) was, however, only slightly higher than that of the PPy/paper composite film (0.1142 Wm−1K−1 at ~300 K). As a result, the ZT value of the PEDOT:PSS/PPy/paper composite film (~1.85 × 10−5 at ~300 K) was significantly enhanced when compared to that of the PPy/paper composite film (~4.73 × 10−7 at ~300 K). The as-prepared nanocomposite films have great potential for application in flexible TE devices

    Flexible Thermoelectric Composite Films of Polypyrrole Nanotubes Coated Paper

    No full text
    Flexible thermoelectric composite films of polypyrrole (PPy) nanotubes coated paper were fabricated by an in-situ polymerization procedure using methyl orange as a template and paper as the substrate for the first time. Both the electrical conductivity and Seebeck coefficient of the polypyrrole nanotubes coated paper composite films have been enhanced (from ~0.048 S/cm to ~0.068 S/cm and from ~5.34 μV/K to ~8.21 μV/K for the average value for three measurements, respectively) as the temperature increased from ~300 K to ~370 K, which lead to the same trend of the power factor. The thermal conductivity of the polypyrrole nanotubes coated composite films was very low (~0.1275 W·m−1·K−1 at ~300 K), and a highest ZT (material’s dimensionless figure of merit (S2σT/κ)) value of 3.2 × 10−7 was obtained at ~370 K

    Morphologies Tuning of Polypyrrole and Thermoelectric Properties of Polypyrrole Nanowire/Graphene Composites

    No full text
    Polypyrrole (PPy) with different morphologies (e.g., particles, nanotubes, and nanowires) were successfully prepared by adding or without adding different kinds of surfactants through a chemical oxidative polymerization method, respectively. The results show that the morphologies of PPy can be effectively controlled and have a significantly effects on their thermoelectric properties. The PPy nanowires exhibit the highest electrical conductivity and Seebeck coefficient among the various PPy morphologies, such as particles, nanotubes, and nanowires, so PPy nanowires were chosen to prepare PPy nanowire/graphene thermoelectric composites via a soft template polymerization method using cetyltrimethyl ammonium bromide as the template. Both electrical conductivity and Seebeck coefficient of the PPy nanowire/graphene composites increased as the content of graphene increases from 0 to 20 wt %, and as the measured temperature increases from 300 K to 380 K, which leds to the same trend for the power factor. A highest power factor of 1.01 μWm−1K−2 at ~380 K was obtained for the PPy nanowire/graphene composites with 20 wt % PPy nanowire, which is about 3.3 times higher than that of the pure PPy nanowire

    Contrasting ecosystem constraints on seasonal terrestrial CO2 and mean surface air temperature causality projections by the end of the 21st century

    No full text
    Two centuries of studies have demonstrated the importance of understanding the interaction between air temperature and carbon dioxide (CO2) emissions, which can impact the climate system and human life in various ways, and across different timescales. While historical interactions have been consistently studied, the nature of future interactions and the impacts of confounding factors still require more investigation in keeping with the continuous updates of climate projections to the end of the 21st century. Phase 6 of the Coupled Model Intercomparison Project (CMIP6), like its earlier projects, provides ScenarioMIP multi-model projections to assess the climate under different radiative forcings ranging from a low-end (SSP1-2.6) to a high-end (SSP5-8.5) pathway. In this study, we analyze the localized causal structure of CO2, and near-surface mean air temperature (meanT) interaction for four scenarios from three CMIP6 models using a rigorous multivariate information flow (IF) causality, which can separate the cause from the effect within the interaction (CO2-meanT and meanT-CO2) by measuring the rate of IF between parameters. First, we obtain patterns of the CO2 and meanT causal structures over space and time. We found a contrasting emission-based impact of soil moisture (SM) and vegetation (leaf area index (LAI)) changes on the meanT-CO2 causal patterns. That is, SM influenced CO2 sink regions in SSP1-2.6 and source regions in SSP5-8.5, and vice versa found for LAI influences. On the other hand, they function similarly to constrain the future CO2 impact on meanT. These findings are essential for improving long-term predictability where climate models might be limited

    Genome-wide association study in Han Chinese identifies four new susceptibility loci for coronary artery disease

    No full text
    We performed a meta-analysis of 2 genome-wide association studies of coronary artery disease comprising 1,515 cases with coronary artery disease and 5,019 controls, followed by de novo replication studies in 15,460 cases and 11,472 controls, all of Chinese Han descent. We successfully identified four new loci for coronary artery disease reaching genome-wide significance (P < 5 × 10(−8)), which mapped in or near TTC32-WDR35, GUCY1A3, C6orf10-BTNL2 and ATP2B1. We also replicated four loci previously identified in European populations (PHACTR1, TCF21, CDKN2A/B and C12orf51). These findings provide new insights into biological pathways for the susceptibility of coronary artery disease in Chinese Han population
    corecore