123 research outputs found

    MFC-09-1: A New Forage Cowpea (\u3cem\u3eVigna unguiculata\u3c/em\u3e (L.) Walp) Variety for South Zone of India

    Get PDF
    Cowpea (Vigna unguiculata (L.) Walp) is a leguminous crop grown throughout West Africa, often in association with pearl millet and sorghum. Cowpea is well adapted to the harsh growing conditions, including low soil fertility, high temperatures, and drought. Cowpea can fix atmospheric nitrogen to improve soil fertility and cropping system productivity. Additionally, farmers feed cowpea fodder to livestock to increase income, and collect the manure produced for use in their fields thereby reduces farmers’ reliance on commercial fertilizers and sustains soil fertility. Previous studies with cowpea indicated that this legume improves soil fertility and enhances the intake and utilization of poor quality roughage consequently improving livestock production and productivity

    Performance of Dual Purpose Pearl Millet Genotypes as Influenced by Cutting Management and Nitrogen Levels

    Get PDF
    Pearl millet (Pennisetum glaucum L.) is important minor millets cultivated both for food and fodder. The dual purpose nature of pearl millet has recently identified due to its profused tillering, repeated harvesting and absence of anti nutritional factor. In fodder crops, the production potential can be manipulated by fertilizer management and time of harvest. In this regard, peal millet no exception, scientific study on cutting and nitrogen management on green fodder yield, quality and grain yield is meagre. Therefore, the present investigation was under taken to study the influence of cutting management and nitrogen levels on green forage and grain yield of dual purpose pearl millet

    Enhancing Productivity of Guinea Grass Variety JHGG-08-1 through Agro-Techniques in Southern Dry Zone of Karnataka

    Get PDF
    Guinea grass (Panicum maximum) is a major pan tropical grass used throughout the tropics for pasture, cut-and-carry, silage and hay. It is a fast growing and leafy grass, which is palatable to livestock with a good nutritional value. However, it is generally recommended to supplement it with sources of protein in order to meet nutritional requirements or improve animal performance. It grows well on a wide variety of well drained soils of good fertility and it is a good vegetative barrier. It can survive quick moving fires which does not harm the underground roots and drought because of the deep, dense and fibrous root system. The potentiality of the varieties varies with agro climatic situation and soil type, keeping these things in view, the present investigation was undertaken to identify the optimum plant population and nutrient levels for enhancing the productivity and quality of guinea grass variety JHGG-08- in southern Zone of Karnataka

    Performance of Guinea Grass Variety JHGG-08-1 in Southern Region of Karnataka

    Get PDF
    Guinea grass (Panicum maximum) is native to Africa but this grass was introduced to almost all tropical countries as a source of animal forage. It grows well on a wide variety of well drained soils of good fertility and it is suitable for vegetative barrier and conservation of soil. It can survive quick moving fires which does not harm the underground roots and drought because of the deep, dense and fibrous root system. The Potentiality of the varieties varies with agro climatic situation and soil type. Keeping these things in view, the present investigation was taken up to study the performance of Guinea grass varieties in southern dry zone of Karnataka under protective irrigation

    Understanding Electricity-Theft Behavior via Multi-Source Data

    Full text link
    Electricity theft, the behavior that involves users conducting illegal operations on electrical meters to avoid individual electricity bills, is a common phenomenon in the developing countries. Considering its harmfulness to both power grids and the public, several mechanized methods have been developed to automatically recognize electricity-theft behaviors. However, these methods, which mainly assess users' electricity usage records, can be insufficient due to the diversity of theft tactics and the irregularity of user behaviors. In this paper, we propose to recognize electricity-theft behavior via multi-source data. In addition to users' electricity usage records, we analyze user behaviors by means of regional factors (non-technical loss) and climatic factors (temperature) in the corresponding transformer area. By conducting analytical experiments, we unearth several interesting patterns: for instance, electricity thieves are likely to consume much more electrical power than normal users, especially under extremely high or low temperatures. Motivated by these empirical observations, we further design a novel hierarchical framework for identifying electricity thieves. Experimental results based on a real-world dataset demonstrate that our proposed model can achieve the best performance in electricity-theft detection (e.g., at least +3.0% in terms of F0.5) compared with several baselines. Last but not least, our work has been applied by the State Grid of China and used to successfully catch electricity thieves in Hangzhou with a precision of 15% (an improvement form 0% attained by several other models the company employed) during monthly on-site investigation.Comment: 11 pages, 8 figures, WWW'20 full pape

    Sex differences in the effect of chronic delivery of the buprenorphine analogue BU08028 on heroin relapse and choice in a rat model of opioid maintenance

    Get PDF
    Background and Purpose: Maintenance treatment with opioid agonists (buprenorphine, methadone) decreases opioid use and relapse. We recently modelled maintenance treatment in rats and found that chronic delivery of buprenorphine or the ÎŒ opioid receptor partial agonist TRV130 decreased relapse to oxycodone seeking and taking. Here, we tested the buprenorphine analogue BU08028 on different heroin relapse-related measures and heroin versus food choice. Experimental Approach: For relapse assessment, we trained male and female rats to self-administer heroin (6 h·day−1, 14 days) in Context A and then implanted osmotic minipumps containing BU08028 (0, 0.03 or 0.1 mg·kg−1·d−1). Effects of chronic BU08028 delivery were tested on (1) incubation of heroin-seeking in a non-drug Context B, (2) extinction responding reinforced by heroin-associated discrete cues in Context B, (3) reinstatement of heroin-seeking induced by re-exposure to Context A and (4) re-acquisition of heroin self-administration in Context A. For choice assessment, we tested the effect of chronic BU08028 delivery on heroin versus food choice. Key Results: Chronic BU08028 delivery decreased incubation of heroin seeking. Unexpectedly, BU08028 increased re-acquisition of heroin self-administration selectively in females. Chronic BU08028 had minimal effects on context-induced reinstatement and heroin versus food choice in both sexes. Finally, exploratory post hoc analyses suggest that BU08028 decreased extinction responding selectively in males. Conclusions and Implications: Chronic BU08028 delivery had both beneficial and detrimental, sex-dependent, effects on different triggers of heroin relapse and minimal effects on heroin choice in both sexes. Results suggest that BU08028 would not be an effective opioid maintenance treatment in humans.</p

    Enhanced Disease Susceptibility 1 and Salicylic Acid Act Redundantly to Regulate Resistance Gene-Mediated Signaling

    Get PDF
    Resistance (R) protein–associated pathways are well known to participate in defense against a variety of microbial pathogens. Salicylic acid (SA) and its associated proteinaceous signaling components, including enhanced disease susceptibility 1 (EDS1), non–race-specific disease resistance 1 (NDR1), phytoalexin deficient 4 (PAD4), senescence associated gene 101 (SAG101), and EDS5, have been identified as components of resistance derived from many R proteins. Here, we show that EDS1 and SA fulfill redundant functions in defense signaling mediated by R proteins, which were thought to function independent of EDS1 and/or SA. Simultaneous mutations in EDS1 and the SA–synthesizing enzyme SID2 compromised hypersensitive response and/or resistance mediated by R proteins that contain coiled coil domains at their N-terminal ends. Furthermore, the expression of R genes and the associated defense signaling induced in response to a reduction in the level of oleic acid were also suppressed by compromising SA biosynthesis in the eds1 mutant background. The functional redundancy with SA was specific to EDS1. Results presented here redefine our understanding of the roles of EDS1 and SA in plant defense

    SAG101 Forms a Ternary Complex with EDS1 and PAD4 and Is Required for Resistance Signaling against Turnip Crinkle Virus

    Get PDF
    EDS1, PAD4, and SAG101 are common regulators of plant immunity against many pathogens. EDS1 interacts with both PAD4 and SAG101 but direct interaction between PAD4 and SAG101 has not been detected, leading to the suggestion that the EDS1-PAD4 and EDS1-SAG101 complexes are distinct. We show that EDS1, PAD4, and SAG101 are present in a single complex in planta. While this complex is preferentially nuclear localized, it can be redirected to the cytoplasm in the presence of an extranuclear form of EDS1. PAD4 and SAG101 can in turn, regulate the subcellular localization of EDS1. We also show that the Arabidopsis genome encodes two functionally redundant isoforms of EDS1, either of which can form ternary complexes with PAD4 and SAG101. Simultaneous mutations in both EDS1 isoforms are essential to abrogate resistance (R) protein-mediated defense against turnip crinkle virus (TCV) as well as avrRps4 expressing Pseudomonas syringae. Interestingly, unlike its function as a PAD4 substitute in bacterial resistance, SAG101 is required for R-mediated resistance to TCV, thus implicating a role for the ternary complex in this defense response. However, only EDS1 is required for HRT-mediated HR to TCV, while only PAD4 is required for SA-dependent induction of HRT. Together, these results suggest that EDS1, PAD4 and SAG101 also perform independent functions in HRT-mediated resistance

    Impact of macroporosity on catalytic upgrading of fast pyrolysis bio-oil by esterification over silica sulfonic acids

    Get PDF
    Fast pyrolysis bio-oils possess unfavourable physicochemical properties and poor stability, due in large part to the presence of carboxylic acids, which hinders their use as biofuels. Catalytic esterification offers an atom and energy efficient route to upgrade pyrolysis bio-oils. Propyl sulfonic acid silicas are active for carboxylic acid esterification but suffer mass-transport limitations for bulky substrates. Macropore (200 nm) incorporation enhances the activity of mesoporous SBA-15 architectures (post-functionalised by hydrothermal saline promoted grafting) for the esterification of linear carboxylic acids, with the magnitude of turnover frequency (TOF) enhancement increasing with chain length from 5 % (C3) to 110 % (C12). Macroporous-mesoporous PrSO3H/SBA-15 also offers a two-fold TOF enhancement over its mesoporous analogue for the esterification of a real thermal fast pyrolysis bio-oil derived from woodchips. The total acid number was reduced by 57 %, with GCxGC-ToFMS evidencing ester and ether formation accompanying loss of acid, phenolic, aldehyde and ketone components

    An Update on the Intracellular and Intercellular Trafficking of Carmoviruses

    Full text link
    [EN] Despite harboring the smallest genomes among plant RNA viruses, carmoviruses have emerged as an ideal model system for studying essential steps of the viral cycle including intracellular and intercellular trafficking. Two small movement proteins, formerly known as double gene block proteins (DGBp1 and DGBp2), have been involved in the movement throughout the plant of some members of carmovirus genera. DGBp1 RNA-binding capability was indispensable for cell-to-cell movement indicating that viral genomes must interact with DGBp1 to be transported. Further investigation on Melon necrotic spot virus (MNSV) DGBp1 subcellular localization and dynamics also supported this idea as this protein showed an actin-dependent movement along microfilaments and accumulated at the cellular periphery. Regarding DGBp2, subcellular localization studies showed that MNSV and Pelargonium flower break virus DGBp2s were inserted into the endoplasmic reticulum (ER) membrane but only MNSV DGBp2 trafficked to plasmodesmata (PD) via the Golgi apparatus through a COPII-dependent pathway. DGBp2 function is still unknown but its localization at PD was a requisite for an efficient cell-to-cell movement. It is also known that MNSV infection can induce a dramatic reorganization of mitochondria resulting in anomalous organelles containing viral RNAs. These putative viral factories were frequently found associated with the ER near the PD leading to the possibility that MNSV movement and replication could be spatially linked. Here, we update the current knowledge of the plant endomembrane system involvement in carmovirus intra-and intercellular movement and the tentative model proposed for MNSV transport within plant cells.This work was funded by grant BIO2014-54862-R from the Spanish Direccion General de Investigacion Cientifica y Tecnica (DGICYT) and the Prometeo Program GV2014/010 from the Generalitat Valenciana.Navarro Bohigues, JA.; PallĂĄs Benet, V. (2017). An Update on the Intracellular and Intercellular Trafficking of Carmoviruses. Frontiers in Plant Science. 8:1-7. https://doi.org/10.3389/fpls.2017.01801S178Adams, M. J., Lefkowitz, E. J., King, A. M. Q., Harrach, B., Harrison, R. L., Knowles, N. J., 
 Davison, A. J. (2016). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016). Archives of Virology, 161(10), 2921-2949. doi:10.1007/s00705-016-2977-6Blake, J. A., Lee, K. W., Morris, T. J., & Elthon, T. E. (2007). Effects of turnip crinkle virus infection on the structure and function of mitochondria and expression of stress proteins in turnips. Physiologia Plantarum, 129(4), 698-706. doi:10.1111/j.1399-3054.2006.00852.xBlanco-PĂ©rez, M., PĂ©rez-CañamĂĄs, M., Ruiz, L., & HernĂĄndez, C. (2016). Efficient Translation of Pelargonium line pattern virus RNAs Relies on a TED-Like 3ÂŽ-Translational Enhancer that Communicates with the Corresponding 5ÂŽ-Region through a Long-Distance RNA-RNA Interaction. PLOS ONE, 11(4), e0152593. doi:10.1371/journal.pone.0152593Brandizzi, F., Frangne, N., Marc-Martin, S., Hawes, C., Neuhaus, J.-M., & Paris, N. (2002). The Destination for Single-Pass Membrane Proteins Is Influenced Markedly by the Length of the Hydrophobic Domain. The Plant Cell, 14(5), 1077-1092. doi:10.1105/tpc.000620Carrington, J. C., Heaton, L. A., Zuidema, D., Hillman, B. I., & Morris, T. J. (1989). The genome structure of turnip crinkle virus. Virology, 170(1), 219-226. doi:10.1016/0042-6822(89)90369-3Chandra-Shekara, A. C., Navarre, D., Kachroo, A., Kang, H.-G., Klessig, D., & Kachroo, P. (2004). Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. The Plant Journal, 40(5), 647-659. doi:10.1111/j.1365-313x.2004.02241.xCohen, Y., Gisel, A., & Zambryski, P. C. (2000). Cell-to-Cell and Systemic Movement of Recombinant Green Fluorescent Protein-Tagged Turnip Crinkle Viruses. Virology, 273(2), 258-266. doi:10.1006/viro.2000.0441Cohen, Y., Qu, F., Gisel, A., Morris, T. J., & Zambryski, P. C. (2000). Nuclear Localization of Turnip Crinkle Virus Movement Protein p8. Virology, 273(2), 276-285. doi:10.1006/viro.2000.0440Gao, F., Kasprzak, W., Stupina, V. A., Shapiro, B. A., & Simon, A. E. (2012). A Ribosome-Binding, 3â€Č Translational Enhancer Has a T-Shaped Structure and Engages in a Long-Distance RNA-RNA Interaction. Journal of Virology, 86(18), 9828-9842. doi:10.1128/jvi.00677-12GarcĂ­a-Castillo, S., SĂĄnchez-Pina, M. A., & PallĂĄs, V. (2003). Spatio-temporal analysis of the RNAs, coat and movement (p7) proteins of Carnation mottle virus in Chenopodium quinoa plants. Journal of General Virology, 84(3), 745-749. doi:10.1099/vir.0.18715-0GenovĂ©s, A., Navarro, J. A., & PallĂĄs, V. (2006). Functional analysis of the five melon necrotic spot virus genome-encoded proteins. Journal of General Virology, 87(8), 2371-2380. doi:10.1099/vir.0.81793-0GenovĂ©s, A., Navarro, J. A., & PallĂĄs, V. (2009). A self-interacting carmovirus movement protein plays a role in binding of viral RNA during the cell-to-cell movement and shows an actin cytoskeleton dependent location in cell periphery. Virology, 395(1), 133-142. doi:10.1016/j.virol.2009.08.042Genoves, A., Pallas, V., & Navarro, J. A. (2011). Contribution of Topology Determinants of a Viral Movement Protein to Its Membrane Association, Intracellular Traffic, and Viral Cell-to-Cell Movement. Journal of Virology, 85(15), 7797-7809. doi:10.1128/jvi.02465-10GĂłmez-Aix, C., GarcĂ­a-GarcĂ­a, M., Aranda, M. A., & SĂĄnchez-Pina, M. A. (2015). Melon necrotic spot virus Replication Occurs in Association with Altered Mitochondria. Molecular Plant-Microbe InteractionsÂź, 28(4), 387-397. doi:10.1094/mpmi-09-14-0274-rGrangeon, R., Jiang, J., & LalibertĂ©, J.-F. (2012). Host endomembrane recruitment for plant RNA virus replication. Current Opinion in Virology, 2(6), 683-690. doi:10.1016/j.coviro.2012.10.003Grangeon, R., Jiang, J., Wan, J., Agbeci, M., Zheng, H., & LalibertĂ©, J.-F. (2013). 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Frontiers in Microbiology, 4. doi:10.3389/fmicb.2013.00351Guilley, H., Carrington, J. C., BalĂ zs, E., Jonard, G., Richards, K., & Morris, T. J. (1985). Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucleic Acids Research, 13(18), 6663-6677. doi:10.1093/nar/13.18.6663Hacker, D. L., Petty, I. T. D., Wei, N., & Morris, T. J. (1992). Turnip crinkle virus genes required for RNA replication and virus movement. Virology, 186(1), 1-8. doi:10.1016/0042-6822(92)90055-tHerrera-VĂĄsquez, J. A., CĂłrdoba-SellĂ©s, M. C., CebriĂĄn, M. C., Alfaro-FernĂĄndez, A., & JordĂĄ, C. (2009). Seed transmission ofMelon necrotic spot virusand efficacy of seed-disinfection treatments. Plant Pathology, 58(3), 436-442. doi:10.1111/j.1365-3059.2008.01985.xJiang, J., & LalibertĂ©, J.-F. (2016). Membrane Association for Plant Virus Replication and Movement. Current Research Topics in Plant Virology, 67-85. doi:10.1007/978-3-319-32919-2_3Kaido, M., Tsuno, Y., Mise, K., & Okuno, T. (2009). Endoplasmic reticulum targeting of the Red clover necrotic mosaic virus movement protein is associated with the replication of viral RNA1 but not that of RNA2. Virology, 395(2), 232-242. doi:10.1016/j.virol.2009.09.022Kawakami, S., Watanabe, Y., & Beachy, R. N. (2004). Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proceedings of the National Academy of Sciences, 101(16), 6291-6296. doi:10.1073/pnas.0401221101Krczal, G. (1995). Transmission of Pelargonium Flower Break Virus (PFBV) in Irrigation Systems and by Thrips. Plant Disease, 79(2), 163. doi:10.1094/pd-79-0163Lerch-Bader, M., Lundin, C., Kim, H., Nilsson, I., & von Heijne, G. (2008). Contribution of positively charged flanking residues to the insertion of transmembrane helices into the endoplasmic reticulum. Proceedings of the National Academy of Sciences, 105(11), 4127-4132. doi:10.1073/pnas.0711580105Lesemann, D.-E., & Adam, G. (1994). ELECTRON MICROSCOPICAL AND SEROLOGICAL STUDIES ON FOUR ISOMETRICAL PELARGONIUM VIRUSES. Acta Horticulturae, (377), 41-54. doi:10.17660/actahortic.1994.377.3Li, W., Qu, F., & Morris, T. J. (1998). Cell-to-Cell Movement of Turnip Crinkle Virus Is Controlled by Two Small Open Reading Frames That Functionin trans. Virology, 244(2), 405-416. doi:10.1006/viro.1998.9125Liu, C., & Nelson, R. S. (2013). The cell biology of Tobacco mosaic virus replication and movement. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00012Marcos, J. F., Vilar, M., PĂ©rez-PayĂĄ, E., & PallĂĄs, V. (1999). In VivoDetection, RNA-Binding Properties and Characterization of the RNA-Binding Domain of the p7 Putative Movement Protein from Carnation Mottle Carmovirus (CarMV). Virology, 255(2), 354-365. doi:10.1006/viro.1998.9596Martínez-Gil, L., Johnson, A. E., & Mingarro, I. (2010). Membrane Insertion and Biogenesis of the Turnip Crinkle Virus p9 Movement Protein. Journal of Virology, 84(11), 5520-5527. doi:10.1128/jvi.00125-10MartĂ­nez-Gil, L., SaurĂ­, A., Vilar, M., PallĂĄs, V., & Mingarro, I. (2007). Membrane insertion and topology of the p7B movement protein of Melon Necrotic Spot Virus (MNSV). Virology, 367(2), 348-357. doi:10.1016/j.virol.2007.06.006MartĂ­nez-Turiño, S., & HernĂĄndez, C. (2009). Inhibition of RNA silencing by the coat protein of Pelargonium flower break virus: distinctions from closely related suppressors. Journal of General Virology, 90(2), 519-525. doi:10.1099/vir.0.006098-0MartĂ­nez-Turiño, S., & HernĂĄndez, C. (2011). A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology, 413(2), 310-319. doi:10.1016/j.virol.2011.03.001MartĂ­nez-Turiño, S., & HernĂĄndez, C. (2012). Analysis of the subcellular targeting of the smaller replicase protein of Pelargonium flower break virus. Virus Research, 163(2), 580-591. doi:10.1016/j.virusres.2011.12.011Mello, A. F. S., Clark, A. J., & Perry, K. L. (2009). Capsid protein of cowpea chlorotic mottle virus is a determinant for vector transmission by a beetle. Journal of General Virology, 91(2), 545-551. doi:10.1099/vir.0.016402-0Miras, M., Sempere, R. N., Kraft, J. J., Miller, W. A., Aranda, M. A., & Truniger, V. (2013). Interfamilial recombination between viruses led to acquisition of a novel translation-enhancing RNA element that allows resistance breaking. New Phytologist, 202(1), 233-246. doi:10.1111/nph.12650Mochizuki, T., Hirai, K., Kanda, A., Ohnishi, J., Ohki, T., & Tsuda, S. (2009). Induction of necrosis via mitochondrial targeting of Melon necrotic spot virus replication protein p29 by its second transmembrane domain. Virology, 390(2), 239-249. doi:10.1016/j.virol.2009.05.012Morozov, S. Y., & Solovyev, A. G. (2003). Triple gene block: modular design of a multifunctional machine for plant virus movement. Journal of General Virology, 84(6), 1351-1366. doi:10.1099/vir.0.18922-0Mueller, S. J., & Reski, R. (2015). Mitochondrial Dynamics and the ER: The Plant Perspective. Frontiers in Cell and Developmental Biology, 3. doi:10.3389/fcell.2015.00078Navarro, J. A., GenovĂ©s, A., Climent, J., SaurĂ­, A., MartĂ­nez-Gil, L., Mingarro, I., & PallĂĄs, V. (2006). RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology, 356(1-2), 57-67. doi:10.1016/j.virol.2006.07.040Nieto, C., Morales, M., Orjeda, G., Clepet, C., Monfort, A., Sturbois, B., 
 Bendahmane, A. (2006). AneIF4Eallele confers resistance to an uncapped and non-polyadenylated RNA virus in melon. The Plant Journal, 48(3), 452-462. doi:10.1111/j.1365-313x.2006.02885.xOhki, T., Akita, F., Mochizuki, T., Kanda, A., Sasaya, T., & Tsuda, S. (2010). The protruding domain of the coat protein of Melon necrotic spot virus is involved in compatibility with and transmission by the fungal vector Olpidium bornovanus. Virology, 402(1), 129-134. doi:10.1016/j.virol.2010.03.020Panavas, T., Hawkins, C. M., Panaviene, Z., & Nagy, P. D. (2005). The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology, 338(1), 81-95. doi:10.1016/j.virol.2005.04.025Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe InteractionsÂź, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879Qu, F., Ren, T., & Morris, T. J. (2003). The Coat Protein of Turnip Crinkle Virus Suppresses Posttranscriptional Gene Silencing at an Early Initiation Step. Journal of Virology, 77(1), 511-522. doi:10.1128/jvi.77.1.511-522.2003Riviere, C. J., & Rochon, D. M. (1990). Nucleotide sequence and genomic organization of melon necrotic spot virus. Journal of General Virology, 71(9), 1887-1896. doi:10.1099/0022-1317-71-9-1887Romero-Brey, I., & Bartenschlager, R. (2014). Membranous Replication Factories Induced by Plus-Strand RNA Viruses. Viruses, 6(7), 2826-2857. doi:10.3390/v6072826Russo, M., & Martelli, G. P. (1982). Ultrastructure of turnip crinkle- and saguaro cactus virus-infected tissues. Virology, 118(1), 109-116. doi:10.1016/0042-6822(82)90324-5SaurĂ­, A., Saksena, S., Salgado, J., Johnson, A. E., & Mingarro, I. (2005). Double-spanning Plant Viral Movement Protein Integration into the Endoplasmic Reticulum Membrane Is Signal Recognition Particle-dependent, Translocon-mediated, and Concerted. Journal of Biological Chemistry, 280(27), 25907-25912. doi:10.1074/jbc.m412476200Serra-Soriano, M., Antonio Navarro, J., & PallĂĄs, V. (2016). Dissecting the multifunctional role of the N-terminal domain of theMelon necrotic spot viruscoat protein in RNA packaging, viral movement and interference with antiviral plant defence. Molecular Plant Pathology, 18(6), 837-849. doi:10.1111/mpp.12448Serra-Soriano, M., PallĂĄs, V., & Navarro, J. A. (2014). A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. The Plant Journal, 77(6), 863-879. doi:10.1111/tpj.12435Shi, Y., Ryabov, E. V., van Wezel, R., Li, C., Jin, M., Wang, W., 
 Hong, Y. (2009). Suppression of local RNA silencing is not sufficient to promote cell-to-cell movement ofTurnip crinkle virusinNicotiana benthamiana. Plant Signaling & Behavior, 4(1), 15-22. doi:10.4161/psb.4.1.7573Teakle, D. S. (1980). FUNGI. Vectors of Plant Pathogens, 417-438. doi:10.1016/b978-0-12-326450-3.50021-8Thomas, C. L., Leh, V., Lederer, C., & Maule, A. J. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in nicotiana benthamiana. Virology, 306(1), 33-41. doi:10.1016/s0042-6822(02)00018-1Tilsner, J., Linnik, O., Louveaux, M., Roberts, I. M., Chapman, S. N., & Oparka, K. J. (2013). Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. Journal of Cell Biology, 201(7), 981-995. doi:10.1083/jcb.201304003Verchot, J. (2011). Wrapping membranes around plant virus infection. Current Opinion in Virology, 1(5), 388-395. doi:10.1016/j.coviro.2011.09.009Vilar, M., Esteve, V., PallĂĄs, V., Marcos, J. F., & PĂ©rez-PayĂĄ, E. (2001). Structural Properties of Carnation Mottle Virus p7 Movement Protein and Its RNA-binding Domain. Journal of Biological Chemistry, 276(21), 18122-18129. doi:10.1074/jbc.m100706200Vilar, M., SaurĂ­, A., Marcos, J. F., Mingarro, I., & PĂ©rez-PayĂĄ, E. (2005). Transient Structural Ordering of the RNA-Binding Domain of Carnation Mottle Virus p7 Movement Protein Modulates Nucleic Acid Binding. ChemBioChem, 6(8), 1391-1396. doi:10.1002/cbic.200400451Vilar, M., Saurı́, A., MonnĂ©, M., Marcos, J. F., von Heijne, G., PĂ©rez-PayĂĄ, E., & Mingarro, I. (2002). Insertion and Topology of a Plant Viral Movement Protein in the Endoplasmic Reticulum Membrane. Journal of Biological Chemistry, 277(26), 23447-23452. doi:10.1074/jbc.m202935200Von Heijne, G. (2007). Formation of Transmembrane Helices In Vivo—Is Hydrophobicity All that Matters? Journal of General Physiology, 129(5), 353-356. doi:10.1085/jgp.200709740Wada, Y., Tanaka, H., Yamashita, E., Kubo, C., Ichiki-Uehara, T., Nakazono-Nagaoka, E., 
 Tsukihara, T. (2007). The structure of melon necrotic spot virus determined at 2.8 Å resolution. Acta Crystallographica Section F Structural Biology and Crystallization Communications, 64(1), 8-13. doi:10.1107/s1744309107066481Wobbe, K. K., Akgoz, M., Dempsey, D. A., & Klessig, D. F. (1998). A Single Amino Acid Change in Turnip Crinkle Virus Movement Protein p8 Affects RNA Binding and Virulence onArabidopsis thaliana. Journal of Virology, 72(7), 6247-6250. doi:10.1128/jvi.72.7.6247-6250.1998Zhang, X., Zhang, X., Singh, J., Li, D., & Qu, F. (2012). Temperature-Dependent Survival of Turnip Crinkle Virus-Infected Arabidopsis Plants Relies on an RNA Silencing-Based Defense That Requires DCL2, AGO2, and HEN1. Journal of Virology, 86(12), 6847-6854. doi:10.1128/jvi.00497-12Zhou, Y., Ryabov, E., Zhang, X., & Hong, Y. (2008). Influence of viral genes on the cell-to-cell spread of RNA silencing. Journal of Experimental Botany, 59(10), 2803-2813. doi:10.1093/jxb/ern14
    • 

    corecore