543 research outputs found

    Nutritional management of individuals with Huntington’s disease: nutritional guidelines

    Get PDF
    The delivery of good nutritional care is a fundamental element of the management of individuals with Huntington’s disease and all patients with Huntington’s disease will, at some time, need dietary intervention because of the sequela of the disease; yet there are no European nutritional guidelines. The European Huntington’s Disease Network Standards of Care Dietitians Group has brought together expert dietitians from across Europe to produce nutritional guidelines to improve the nutritional management of individuals with Huntington’s disease. The guidelines were developed to promote optimal nutritional screening, assessment and management of individuals throughout all stages of the disease, with the aim of improving the standard of nutritional care delivered. Literature was systematically searched in an attempt to ensure that the recommendations are based on sound evidence and where evidence is lacking, specific guidance is based on consensus expert dietetic opinion. The provision of nutritional care varies widely between countries. Implementation of these nutritional guidelines across Europe should improve the quality of nutritional care delivered to individuals with Huntington’s disease

    Temporal whole field sawtooth flicker without a spatial component elicits a myopic shift following optical defocus irrespective of waveform direction in chicks

    Get PDF
    Purpose Myopia (short-sightedness) is the commonest visual disorder and greatest risk factor for sight threatening secondary pathologies. Myopia and hyperopia can be induced in animal models by rearing with optical lens defocus of opposite sign. The degree of refractive compensation to lens-induced defocus in chicks has been shown to be modified by directionally drifting sawtooth spatio-temporal luminance diamond plaids, with Fast-ON sawtooth spatio-temporal luminance profiles inhibiting the myopic shift in response to negative lenses, and Fast-OFF profiles inhibiting the hyperopic shift in response to positive lenses. What is unknown is whether similar sign-of-defocus dependent results produced by spatio-temporal modulation of sawtooth patterns could be achieved by rearing chicks under whole field low temporal frequency sawtooth luminance profiles at 1 or 4 Hz without a spatial component, or whether such stimuli would indiscriminately elicit a myopic shift such as that previously shown with symmetrical (or near-symmetrical) low frequency flicker across a range of species. Methods Hatchling chicks (n = 166) were reared from days five to nine under one of three defocus conditions (No Lens, +10D lens, or −10D lens) and five light conditions (No Flicker, 1 Hz Fast-ON/Slow-OFF sawtooth flicker, 4 Hz Fast-ON/Slow-OFF sawtooth flicker, 1 Hz Fast-OFF/Slow-ON sawtooth flicker, or 4Hz Fast-OFF/Slow-ON sawtooth flicker). The sawtooth flicker was produced by light emitting diodes (white LEDs, 1.2 –183 Lux), and had no measurable dark phase. Biometrics (refraction and ocular axial dimensions) were measured on day nine. Results Both 1 Hz and 4 Hz Fast-ON and Fast-OFF sawtooth flicker induced an increase in vitreous chamber depth that was greater in the presence of negative compared to positive lens defocus. Both sawtooth profiles at both temporal frequencies inhibited the hyperopic shift in response to +10D lenses, whilst full myopic compensation (or over-compensation) in response to −10D lenses was observed. Conclusions Whole field low temporal frequency Fast-ON and Fast-OFF sawtooth flicker induces a generalized myopic shift, similar to that previously shown for symmetrical sine-wave and square-wave flicker. Our findings highlight that temporal modulation of retinal ON/OFF pathways per se (without a spatial component) is insufficient to produce strong sign-of-defocus dependent effect

    Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    Get PDF
    Familial idiopathic basal ganglia calcification (IBGC) or Fahr's disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient's disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation

    Mutation of HIV-1 Genomes in a Clinical Population Treated with the Mutagenic Nucleoside KP1461

    Get PDF
    The deoxycytidine analog KP1212, and its prodrug KP1461, are prototypes of a new class of antiretroviral drugs designed to increase viral mutation rates, with the goal of eventually causing the collapse of the viral population. Here we present an extensive analysis of viral sequences from HIV-1 infected volunteers from the first “mechanism validation” phase II clinical trial of a mutagenic base analog in which individuals previously treated with antiviral drugs received 1600 mg of KP1461 twice per day for 124 days. Plasma viral loads were not reduced, and overall levels of viral mutation were not increased during this short-term study, however, the mutation spectrum of HIV was altered. A large number (N = 105 per sample) of sequences were analyzed, each derived from individual HIV-1 RNA templates, after 0, 56 and 124 days of therapy from 10 treated and 10 untreated control individuals (>7.1 million base pairs of unique viral templates were sequenced). We found that private mutations, those not found in more than one viral sequence and likely to have occurred in the most recent rounds of replication, increased in treated individuals relative to controls after 56 (p = 0.038) and 124 (p = 0.002) days of drug treatment. The spectrum of mutations observed in the treated group showed an excess of A to G and G to A mutations (p = 0.01), and to a lesser extent T to C and C to T mutations (p = 0.09), as predicted by the mechanism of action of the drug. These results validate the proposed mechanism of action in humans and should spur development of this novel antiretroviral approach.Koronis Pharmaceutical

    Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis

    Get PDF
    Genetic association studies have identified 21 loci associated with atopic dermatitis risk predominantly in populations of European ancestry. To identify further susceptibility loci for this common, complex skin disease, we performed a meta-analysis of >15 million genetic variants in 21,399 cases and 95,464 controls from populations of European, African, Japanese and Latino ancestry, followed by replication in 32,059 cases and 228,628 controls from 18 studies. We identified ten new risk loci, bringing the total number of known atopic dermatitis risk loci to 31 (with new secondary signals at four of these loci). Notably, the new loci include candidate genes with roles in the regulation of innate host defenses and T cell function, underscoring the important contribution of (auto)immune mechanisms to atopic dermatitis pathogenesis

    European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation

    Get PDF
    Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities.</p
    corecore