65 research outputs found

    Excess maternal salt or fructose intake programmes sex-specific, stress- and fructose-sensitive hypertension in the offspring

    Get PDF
    The Western diet is typically high in salt and fructose, which have pressor activity. Maternal diet can affect offspring blood pressure, but the extent to which maternal intake of excess salt and fructose may influence cardiovascular function of the offspring is unknown. We sought to determine the effect of moderate maternal dietary intake of salt and/or fructose on resting and stimulated cardiovascular function of the adult male and female offspring. Pregnant rats were fed purified diets (±4 % salt) and water (±10 % fructose) before and during gestation and through lactation. Male and female offspring were weaned onto standard laboratory chow. From 9 to 14 weeks of age, cardiovascular parameters (basal, circadian and stimulated) were assessed continuously by radiotelemetry. Maternal salt intake rendered opposite-sex siblings with a 25-mmHg difference in blood pressure as adults; male offspring were hypertensive (15 mmHg mean arterial pressure (MAP)) and female offspring were hypotensive (10 mmHg MAP) above and below controls, respectively. Sex differences were unrelated to endothelial nitric oxide activity in vivo, but isolation-induced anxiety revealed a significantly steeper coupling between blood pressure and heart rate in salt-exposed male offspring but not in female offspring. MAP of all offspring was refractory to salt loading but sensitive to subsequent dietary fructose, an effect exacerbated in female offspring from fructose-fed dams. Circadian analyses of pressure in all offspring revealed higher mean set-point for heart rate and relative non-dipping of nocturnal pressure. In conclusion, increased salt and fructose in the maternal diet has lasting effects on offspring cardiovascular function that is sex-dependent and related to the offspring’s stress–response axis

    Maternal fructose and/or salt intake and reproductive outcome in the rat: effects on growth, fertility, sex ratio, and birth order

    Get PDF
    Maternal diet can significantly skew the secondary sex ratio away from the expected value of 0.5 (proportion males), but the details of how diet may do this are unclear. Here, we altered dietary levels of salt (4% salt in the feed) and/or fructose (10% in the drinking water) of pregnant rats to model potential effects that consumption of a "Western diet" might have on maternofetal growth, development, and sex ratio. We demonstrate that excess fructose consumption before and during pregnancy lead to a marked skew in the secondary sex ratio (proportion of males, 0.60; P < 0.006). The effect was not mediated by selective developmental arrest of female embryos or influenced by fetal position in the uterine horn or sex-specific effects on sperm motility, suggesting a direct effect of glycolyzable monosaccharide on the maternal ovary and/or ovulated oocyte. Furthermore, combined excess maternal consumption of salt and fructose-sweetened beverage significantly reduced fertility, reflected as a 50% reduction in preimplantation and term litter size. In addition, we also noted birth order effects in the rat, with sequential implantation sites tending to be occupied by the same sex

    Effects of Endotoxaemia on Protein Metabolism in Rat Fast-Twitch Skeletal Muscle and Myocardium

    Get PDF
    It is unclear if the rat myocardium undergoes the same rapid reductions in protein content that are classically observed in fast-twitch skeletal muscle during endotoxaemia.To investigate this further, and to determine if there is any divergence in the response of skeletal muscle and myocardium in the mechanisms that are thought to be largely responsible for eliciting changes in protein content, Sprague Dawley rats were implanted with vascular catheters and administered lipopolysaccharide (LPS; 150 microg kg(-1) h(-1)) intravenously for 2 h, 6 h or 24 h (saline administered control animals were also included), after which the extensor digitorum longus (EDL) and myocardium were removed under terminal anaesthesia. The protein-to-DNA ratio, a marker of protein content, was significantly reduced in the EDL following 24 h LPS administration (23%; P<0.05), but was no different from controls in the myocardium. At the same time point, a significant increase in MAFbx/atrogin-1 and MuRF1 mRNA (3.7+/-0.7- and 19.5+/-1.9-fold increase vs. controls, respectively; P<0.05), in addition to protein levels of alpha1-3, 5-7 subunits of the 20S proteasome, were observed in EDL but not myocardium. In contrast, elevations in phosphorylation of p70 S6K residues Thr(421)/Ser(424), and 4E-BP1 residues Thr(37)/Thr(46) (P<0.05), consistent with an elevation in translation initiation, were seen exclusively in the myocardium of LPS-treated animals.In summary, these findings suggest that the myocardium does not undergo the same catabolic response as skeletal muscle during early endotoxaemia, partly due to the absence of transcriptional and signalling events in the myocardium typically associated with increased muscle proteolysis and the suppression of protein synthesis

    Using Esterase Selectivity to Determine the in Vivo Duration of Systemic Availability and Abolish Systemic Side Effects of Topical β-Blockers

    Get PDF
    © 2020 American Chemical Society. For disorders of the skin, eyes, ears, and respiratory tract, topical drugs, delivered directly to the target organ, are a therapeutic option. Compared with systemic oral therapy, the benefits of topical treatments include a faster onset of action, circumventing the liver first pass drug metabolism, and reducing systemic side effects. Nevertheless, some systemic absorption still occurs for many topical agents resulting in systemic side effects. One way to prevent these would be to develop drugs that are instantly degraded upon entry into the bloodstream by serum esterases. Because topical β-blockers are used in glaucoma and infantile hemeangioma and cause systemic side effects, the β-adrenoceptor system was used to test this hypothesis. Purified liver esterase reduced the apparent affinity of esmolol, an ester-containing β-blocker used in clinical emergencies, for the human β-adrenoceptors in a concentration and time-dependent manner. However, purified serum esterase had no effect on esmolol. Novel ester-containing β-blockers were synthesized and several were sensitive to both liver and serum esterases. Despite good in vitro affinity, one such compound, methyl 2-(3-chloro-4-(3-((2-(3-(3-chlorophenyl)ureido)ethyl)amino)-2-hydroxypropoxy)phenyl)acetate, had no effect on heart rate when injected intravenously into rats, even at 10 times the equipotent dose of esmolol and betaxolol that caused short and sustained reductions in heart rate, respectively. Thus, ester-based drugs, sensitive to serum esterases, offer a mechanism for developing topical agents that are truly devoid of systemic side effects. Furthermore, differential susceptibility to liver and serum esterases degradation may also allow the duration of systemic availability for other drugs to be fine-tuned

    Identification and Diagnostic Performance of a Small RNA within the PCA3 and BMCC1 Gene Locus That Potentially Targets mRNA

    Get PDF
    Background: PCA3 is a long noncoding RNA (lncRNA) with unknown function, upregulated in prostate cancer. LncRNAs may be processed into smaller active species. We hypothesized this for PCA3. Methods: We computed feasible RNA hairpins within the BMCC1 gene (encompassing PCA3) and searched a prostate transcriptome for these. We measured expression using qRT-PCR in three cohorts of prostate cancer tissues (n = 60), exfoliated urinary cells (n = 484 with cancer and n = 166 controls), and in cell lines (n = 22). We used in silico predictions and RNA knockup to identify potential mRNA targets of short transcribed RNAs. Results: We predicted 13 hairpins, of which PCA3-shRNA2 was most abundant within the prostate transcriptome. PCA3-shRNA2 is located within intron 1 of PCA3 and appears regulated by androgens. Expression of PCA3-shRNA2 was upregulated in malignant prostatic tissues, exfoliated urinary cells from men with prostate cancer (13–273 fold change; t test P < 0.003), and closely correlated to PCA3 expression (r = 0.84–0.93; P < 0.001). Urinary PCA3-shRNA2 (C-index, 0.75–0.81) and PCA3 (C-index, 0.78) could predict the presence of cancer in most men. PCA3-shRNA2 knockup altered the expression of predicted target mRNAs, including COPS2, SOX11, WDR48, TEAD1, and Noggin. PCA3-shRNA2 expression was negatively correlated with COPS2 in patient samples (r = −0.32; P < 0.001). Conclusion: We identified a short RNA within PCA3, whose expression is correlated to PCA3, which may target mRNAs implicated in prostate biology

    Peroxisome proliferator-activated receptor γ agonism attenuates endotoxaemia-induced muscle protein loss and lactate accumulation in rats

    Get PDF
    The peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (Rosi) appears to provide protection against organ dysfunction during endotoxaemia. We examined the potential benefits of Rosi on skeletal muscle protein maintenance and carbohydrate metabolism during lipopolysaccharide (LPS)-induced endotoxaemia. Sprague-Dawley rats were fed either standard chow (control) or standard chow containing Rosi (8.5±0.1 mg.kg-1.day-1) for two weeks before and during 24 h continuous intravenous infusion of LPS (15 μg.kg-1.h-1) or saline. Rosi blunted LPS-induced increases in muscle tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA by 70% (P<0.05) and 64% (P<0.01), respectively. Furthermore, Rosi suppressed the LPS-induced reduction in phosphorylated AKT and phosphorylated Forkhead box O (FOXO) 1 protein, as well as the upregulation of muscle RING finger 1 (MuRF1; P<0.01) mRNA, and the LPS-induced increase in 20S proteasome activity (P<0.05). Accordingly, LPS reduced the muscle protein:DNA ratio (~30%, P<0.001), which Rosi offset. Increased muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA (P<0.001) and muscle lactate accumulation (P<0.001) during endotoxaemia were suppressed by Rosi. Thus, pre-treatment with Rosi reduced muscle cytokine accumulation and blunted muscle protein loss and lactate accumulation during endotoxaemia, and at least in part by reducing activation of molecular events known to increase muscle protein breakdown and mitochondrial pyruvate use

    Novel selective β1-adrenoceptor antagonists for concomitant cardiovascular and respiratory disease

    Get PDF
    β-Blockers reduce mortality and improve symptoms in people with heart disease. However, current clinically available β-blockers have poor selectivity for the cardiac β1-adrenoceptor (AR) over the lung β2-AR. Unwanted β2-blockade risks causing life-threatening bronchospasm and a reduction in the efficacy of β2-agonist emergency rescue therapy. Thus current life-prolonging β-blockers are contraindicated in people with both heart disease and asthma. Here we describe NDD-713 and NDD-825, novel highly β1-selective neutral antagonists with good pharmaceutical properties that can potentially overcome this limitation. Radioligand binding studies and functional assays using human receptors expressed in CHO cells demonstrate that NDD-713 and NDD-825 have nanomolar β1-AR affinity, greater than 500-fold β1-AR vs β2-AR selectivity and no agonism. Studies in conscious rats demonstrated that they are orally bioavailable and cause pronounced β1-mediated reduction of heart rate while showing no effect on β2-mediated hindquarters vasodilatation. The compounds also have good disposition properties and show no adverse toxicological effects. They potentially offer a truly cardioselective β-blocker therapy for the large number of people with heart and respiratory, or peripheral vascular comorbidities
    corecore