251 research outputs found

    Book Reviews

    Get PDF

    Are megaquakes clustered?

    Full text link
    We study statistical properties of the number of large earthquakes over the past century. We analyze the cumulative distribution of the number of earthquakes with magnitude larger than threshold M in time interval T, and quantify the statistical significance of these results by simulating a large number of synthetic random catalogs. We find that in general, the earthquake record cannot be distinguished from a process that is random in time. This conclusion holds whether aftershocks are removed or not, except at magnitudes below M = 7.3. At long time intervals (T = 2-5 years), we find that statistically significant clustering is present in the catalog for lower magnitude thresholds (M = 7-7.2). However, this clustering is due to a large number of earthquakes on record in the early part of the 20th century, when magnitudes are less certain.Comment: 5 pages, 5 figure

    Corn Stover Availability and Collection Efficiency Using Typical Hay Equipment

    Get PDF
    Corn stover has been identified as a potential feedstock for the production of fermentable sugars and thermochemical processes. The availability and efficiency of typical hay equipment for collecting corn stover has not been well quantified. Corn stover was collected for two years on a central Kentucky farm near Louisville. Six different harvesting treatments, using traditional hay equipment, were used to harvest corn stover. A rotary mower, rotary scythe (flail-type mower with windrow-forming shields), parallel bar rake, and a round baler were utilized. The average stover moisture content prior to grain harvest was above 40%, and field drying was required before baling. All treatments were analyzed for collection efficiency and corn stover yield. The stover collection yields varied from 1.93 to 5.34 dry t/ha, with collection efficiencies (ratio of stover collected to the total above-ground stover excluding grain) between 32.1% and 94.5%. The most promising collection strategy was disengaging the straw chopper and spreader to produce a windrow behind the combine. This windrow could then be baled in a separate operation that resulted in a collection efficiency of 74.1%

    Validation of an algorithm using inpatient electronic health records to determine the presence and severity of cirrhosis in patients with hepatocellular carcinoma in England: an observational study.

    Get PDF
    OBJECTIVES:Outcomes in hepatocellular carcinoma (HCC) are determined by both cancer characteristics and liver disease severity. This study aims to validate the use of inpatient electronic health records to determine liver disease severity from treatment and procedure codes. DESIGN:Retrospective observational study. SETTING:Two National Health Service (NHS) cancer centres in England. PARTICIPANTS:339 patients with a new diagnosis of HCC between 2007 and 2016. MAIN OUTCOME:Using inpatient electronic health records, we have developed an optimised algorithm to identify cirrhosis and determine liver disease severity in a population with HCC. The diagnostic accuracy of the algorithm was optimised using clinical records from one NHS Trust and it was externally validated using anonymised data from another centre. RESULTS:The optimised algorithm has a positive predictive value (PPV) of 99% for identifying cirrhosis in the derivation cohort, with a sensitivity of 86% (95% CI 82% to 90%) and a specificity of 98% (95% CI 96% to 100%). The sensitivity for detecting advanced stage cirrhosis is 80% (95% CI 75% to 87%) and specificity is 98% (95% CI 96% to 100%), with a PPV of 89%. CONCLUSIONS:Our optimised algorithm, based on inpatient electronic health records, reliably identifies and stages cirrhosis in patients with HCC. This highlights the potential of routine health data in population studies to stratify patients with HCC according to liver disease severity

    Fine-scale seismic structure of the shallow volcanic crust on the East Pacific Rise at 9°50′N

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B12104, doi:10.1029/2004JB003152.We use a combination of body wave and interface wave observations from an on-bottom seismic refraction survey to constrain the fine-scale seismic structure of the upper crust in a ∼3 × 3 km field area centered on the East Pacific Rise at 9°50′N. We detonated 18 explosive shots (18 sources) in a circular pattern (1.5 km radius) on the rise axis and recorded seismic arrivals with eight ocean bottom seismometers (eight receivers). We observed 30–40 Hz compressional body waves from all shots (144 P waves) and 1–3 Hz Stoneley (interface) waves on a subset of source-receiver pairs (58 interface waves). Using a station correction inversion, we find that roughly half of the variance in the P wave first-arrival times results from lateral variations in the thickness of the surface low-velocity layer (SLVL), a layer of extremely porous lava and basalt breccia with an average P wave velocity of 2.2 km s−1. The SLVL thickness increases from <20 m along the axial summit trough (AST) to ∼120 m at near-axis lava depocenters, which are not symmetric about the rise axis. Depocenters are located ∼0.5 km to the west and ∼1.5 km to the east of the rise axis. Tomographic inversion of the Stoneley wave first arrivals reveals that shear velocities in the SLVL covary with the layer thickness, exhibiting a similar asymmetric pattern, with shear velocities increasing from ∼320 m s−1 near the AST to ∼520 m s−1 at the near-axis depocenters. Our analysis demonstrates that the seismic characteristics of the extrusive layer near the rise axis are related primarily to volcanic features and processes. The thickness and velocity of the SLVL are low on the axis and within channel networks that deliver lava flows away from the axis and then increase rapidly at the distal ends of the channels where the lavas are deposited. We find that azimuthal anisotropy exerts only a weak influence on our P wave first-arrival times, which we model as weak (4%) seismic azimuthal anisotropy in the upper dikes with a fast axis oriented N23°–32°W. We find no evidence for seismic azimuthal anisotropy in the extrusive layer

    Existing and potential infection risk zones of yellow fever worldwide: a modelling analysis.

    Get PDF
    BACKGROUND: Yellow fever cases are under-reported and the exact distribution of the disease is unknown. An effective vaccine is available but more information is needed about which populations within risk zones should be targeted to implement interventions. Substantial outbreaks of yellow fever in Angola, Democratic Republic of the Congo, and Brazil, coupled with the global expansion of the range of its main urban vector, Aedes aegypti, suggest that yellow fever has the propensity to spread further internationally. The aim of this study was to estimate the disease's contemporary distribution and potential for spread into new areas to help inform optimal control and prevention strategies. METHODS: We assembled 1155 geographical records of yellow fever virus infection in people from 1970 to 2016. We used a Poisson point process boosted regression tree model that explicitly incorporated environmental and biological explanatory covariates, vaccination coverage, and spatial variability in disease reporting rates to predict the relative risk of apparent yellow fever virus infection at a 5 × 5 km resolution across all risk zones (47 countries across the Americas and Africa). We also used the fitted model to predict the receptivity of areas outside at-risk zones to the introduction or reintroduction of yellow fever transmission. By use of previously published estimates of annual national case numbers, we used the model to map subnational variation in incidence of yellow fever across at-risk countries and to estimate the number of cases averted by vaccination worldwide. FINDINGS: Substantial international and subnational spatial variation exists in relative risk and incidence of yellow fever as well as varied success of vaccination in reducing incidence in several high-risk regions, including Brazil, Cameroon, and Togo. Areas with the highest predicted average annual case numbers include large parts of Nigeria, the Democratic Republic of the Congo, and South Sudan, where vaccination coverage in 2016 was estimated to be substantially less than the recommended threshold to prevent outbreaks. Overall, we estimated that vaccination coverage levels achieved by 2016 avert between 94 336 and 118 500 cases of yellow fever annually within risk zones, on the basis of conservative and optimistic vaccination scenarios. The areas outside at-risk regions with predicted high receptivity to yellow fever transmission (eg, parts of Malaysia, Indonesia, and Thailand) were less extensive than the distribution of the main urban vector, A aegypti, with low receptivity to yellow fever transmission in southern China, where A aegypti is known to occur. INTERPRETATION: Our results provide the evidence base for targeting vaccination campaigns within risk zones, as well as emphasising their high effectiveness. Our study highlights areas where public health authorities should be most vigilant for potential spread or importation events. FUNDING: Bill & Melinda Gates Foundation

    Global yellow fever vaccination coverage from 1970 to 2016: an adjusted retrospective analysis.

    Get PDF
    BACKGROUND: Substantial outbreaks of yellow fever in Angola and Brazil in the past 2 years, combined with global shortages in vaccine stockpiles, highlight a pressing need to assess present control strategies. The aims of this study were to estimate global yellow fever vaccination coverage from 1970 through to 2016 at high spatial resolution and to calculate the number of individuals still requiring vaccination to reach population coverage thresholds for outbreak prevention. METHODS: For this adjusted retrospective analysis, we compiled data from a range of sources (eg, WHO reports and health-service-provider registeries) reporting on yellow fever vaccination activities between May 1, 1939, and Oct 29, 2016. To account for uncertainty in how vaccine campaigns were targeted, we calculated three population coverage values to encompass alternative scenarios. We combined these data with demographic information and tracked vaccination coverage through time to estimate the proportion of the population who had ever received a yellow fever vaccine for each second level administrative division across countries at risk of yellow fever virus transmission from 1970 to 2016. FINDINGS: Overall, substantial increases in vaccine coverage have occurred since 1970, but notable gaps still exist in contemporary coverage within yellow fever risk zones. We estimate that between 393·7 million and 472·9 million people still require vaccination in areas at risk of yellow fever virus transmission to achieve the 80% population coverage threshold recommended by WHO; this represents between 43% and 52% of the population within yellow fever risk zones, compared with between 66% and 76% of the population who would have required vaccination in 1970. INTERPRETATION: Our results highlight important gaps in yellow fever vaccination coverage, can contribute to improved quantification of outbreak risk, and help to guide planning of future vaccination efforts and emergency stockpiling. FUNDING: The Rhodes Trust, Bill & Melinda Gates Foundation, the Wellcome Trust, the National Library of Medicine of the National Institutes of Health, the European Union's Horizon 2020 research and innovation programme

    Ecomorph or Endangered Coral? DNA and Microstructure Reveal Hawaiian Species Complexes: Montipora dilatata/flabellata/turgescens & M. patula/verrilli

    Get PDF
    M. dilatata, M. flabellata, and M. patula and 80 other scleractinian corals were petitioned to be listed under the US Endangered Species Act (ESA), which would have major conservation implications. One of the difficulties with this evaluation is that reproductive boundaries between morphologically defined coral species are often permeable, and morphology can be wildly variable. We examined genetic and morphological variation in Hawaiian Montipora with a suite of molecular markers (mitochondrial: COI, CR, Cyt-B, 16S, ATP6; nuclear: ATPsβ, ITS) and microscopic skeletal measurements. Mitochondrial markers and the ITS region revealed four distinct clades: I) M. patula/M. verrilli, II) M. cf. incrassata, III) M. capitata, IV) M. dilatata/M. flabellata/M. cf. turgescens. These clades are likely to occur outside of Hawai'i according to mitochondrial control region haplotypes from previous studies. The ATPsβ intron data showed a pattern often interpreted as resulting from hybridization and introgression; however, incomplete lineage sorting may be more likely since the multicopy nuclear ITS region was consistent with the mitochondrial data. Furthermore, principal components analysis (PCA) of skeletal microstructure was concordant with the mitochondrial clades, while nominal taxa overlapped. The size and shape of verrucae or papillae contributed most to identifying groups, while colony-level morphology was highly variable. It is not yet clear if these species complexes represent population-level variation or incipient speciation (CA<1MYA), two alternatives that have very different conservation implications. This study highlights the difficulty in understanding the scale of genetic and morphological variation that corresponds to species as opposed to population-level variation, information that is essential for conservation and for understanding coral biodiversity

    Spread of yellow fever virus outbreak in Angola and the Democratic Republic of the Congo 2015-16: a modelling study.

    Get PDF
    BACKGROUND: Since late 2015, an epidemic of yellow fever has caused more than 7334 suspected cases in Angola and the Democratic Republic of the Congo, including 393 deaths. We sought to understand the spatial spread of this outbreak to optimise the use of the limited available vaccine stock. METHODS: We jointly analysed datasets describing the epidemic of yellow fever, vector suitability, human demography, and mobility in central Africa to understand and predict the spread of yellow fever virus. We used a standard logistic model to infer the district-specific yellow fever virus infection risk during the course of the epidemic in the region. FINDINGS: The early spread of yellow fever virus was characterised by fast exponential growth (doubling time of 5-7 days) and fast spatial expansion (49 districts reported cases after only 3 months) from Luanda, the capital of Angola. Early invasion was positively correlated with high population density (Pearson's r 0·52, 95% CI 0·34-0·66). The further away locations were from Luanda, the later the date of invasion (Pearson's r 0·60, 95% CI 0·52-0·66). In a Cox model, we noted that districts with higher population densities also had higher risks of sustained transmission (the hazard ratio for cases ceasing was 0·74, 95% CI 0·13-0·92 per log-unit increase in the population size of a district). A model that captured human mobility and vector suitability successfully discriminated districts with high risk of invasion from others with a lower risk (area under the curve 0·94, 95% CI 0·92-0·97). If at the start of the epidemic, sufficient vaccines had been available to target 50 out of 313 districts in the area, our model would have correctly identified 27 (84%) of the 32 districts that were eventually affected. INTERPRETATION: Our findings show the contributions of ecological and demographic factors to the ongoing spread of the yellow fever outbreak and provide estimates of the areas that could be prioritised for vaccination, although other constraints such as vaccine supply and delivery need to be accounted for before such insights can be translated into policy. FUNDING: Wellcome Trust
    corecore