12 research outputs found

    Application of polymeric microfluidic devices for separation of single-stranded DNA

    Get PDF
    Microsystems targeted for DNA sequencing, especially those focused on electrophoretic separations, are rapidly proving their viability to genomic research, mimicking the progress made when capillary electrophoresis developed from miniaturizing slab gel electrophoresis techniques. Being the more recent electrophoretic separation platform, the commercial availability of microchip electrophoresis devices remains relatively limited. To this extent, high-aspect ratio microstructures formed in thermo plastics have been developed using rapid fabrication methods from molding tools designed for mass replication of high-aspect ratio microfeatures. In this work, the choice and compatibility of poly(methylmethacrylate) (PMMA) – the primary substrate for DNA separations in this work – was investigated for use with our fluorescence lifetime detection instrument. The accuracy and precision of the fluorescence lifetime values of dye-labeled primers used for construction of single-stranded DNA (ssDNA) sequencing tracts was determined to discern the influence of PMMA as a substrate material to the discrimination method. The separation performance of ssDNA was evaluated for potential use of the polymer-based microchip electrophoresis devices as a platform for rapid, high-throughput DNA sequencing. To enhance these separations, a scheme to modify the surface of PMMA employing chemical and photochemical methods was developed. Once optimized, a linear polyacrylamide-modified PMMA surface demonstrated an electroosmotic flow, which varied from chip to chip, lowered by two orders of magnitude and demonstrated increased efficiencies for the separation of ssDNA fragments. As part of a modular system for the analysis of DNA material being developed in our labs, a purification device fabricated in polycarbonate was used to reversibly immobilize DNA sequencing fragments. The purified ssDNA was collected and analyzed by capillary electrophoresis to evaluate the device’s efficiency in removal of contaminants from fragments constructed with dye-labeled primers. One significant result showed the necessity for a down-stream concentration method. Thus, we have investigated the use of a thermally responsive polymer, poly-N-isopropylacrylamide (pNIPAAm) grafted onto the surface of PMMA to serve as a concentration medium for the purified fragments. Results suggest pNIPAAm will be effective in concentrating and releasing fragments when changing the temperature from above its critical temperature (32°), where it exhibits a hydrophobic nature, to below it where it becomes hydrophilic

    Purification and preconcentration of genomic DNA from whole cell lysates using photoactivated polycarbonate (PPC) microfluidic chips

    Get PDF
    We discuss the use of a photoactivated polycarbonate (PPC) microfluidic chip for the solid-phase, reversible immobilization (SPRI) and purification of genomic DNA (gDNA) from whole cell lysates. The surface of polycarbonate was activated by UV radiation resulting in a photo-oxidation reaction, which produced a channel surface containing carboxylate groups. The gDNA was selectively captured on this photoactivated surface in an immobilization buffer, which consisted of 3% polyethylene glycol, 0.4 M NaCl and 70% ethanol. The methodology reported herein is similar to conventional SPRI in that surface-confined carboxylate groups are used for the selective immobilization of DNA; however, no magnetic beads or a magnetic field are required. As observed by UV spectroscopy, a load of ∼7.6 ± 1.6 µg/ml of gDNA was immobilized onto the PPC bed. The recovery of DNA following purification was estimated to be 85 ± 5%. The immobilization and purification assay using this PPC microchip could be performed within ∼25 min as follows: (i) DNA immobilization ∼6 min, (ii) chip washout with ethanol 10 min, and (iii) drying and gDNA desorption ∼6 min. The PPC microchip could also be used for subsequent assays with no substantial loss in recovery, no observable carryover and no need for ‘reactivation’ of the PC surface with UV light

    Contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules

    No full text
    An on-column contact conductivity detector was developed for the analysis of various mono- and polyanionic compounds separated by electrophoresis chips fabricated in poly(methyl methacrylate) (PMMA) using hot embossing techniques from Ni electroforms. The detector consisted of a pair of Pt wires (127 μm diameter) with an end-to-end spacing of approximately 20 μm and situated within the fluidic channel. The waveform applied to the electrode pair was a bipolar pulse with a frequency of 5.0 kHz and was used to reduce the charging current from measurement so that the current recorded at the end of one pulse is more representative of the solution conductivity. Using the detector, separations of amino acids, peptides, proteins, and oligonucleotides were demonstrated. For the amino acids and peptides, free-solution zone electrophoresis was performed. A calibration plot for the amino acid alanine was found to be linear from approximately 10 to 100 nM in a carrier electrolyte consisting of 10 mM triethylamonium acetate. The concentration detection limit was found to be 8.0 nM, with the corresponding mass detection limit equal to 3.4 amol (injection volume = 425 pL). The protein separations with conductivity detection were performed using MEKC, in which the carrier electrolyte contained the anionic surfactant sodium dodecyl sulfate (SDS) above its cmc. Near baseline resolution was achieved in the PMMA microchip for a solution containing 8 different proteins. In the case of the DNA fragments, capillary electrochromatography was used with a C18-modified PMMA chip and a carrier electrolyte containing an ion-pairing agent

    Metformin Inhibits Migration and Invasion by Suppressing ROS Production and COX2 Expression in MDA-MB-231 Breast Cancer Cells

    No full text
    Background: Several mechanisms of action have been proposed to explain the apparent antineoplastic functions of metformin, many of which are observed at high concentrations that may not be reflective of achievable tissue concentrations. We propose that metformin at low concentrations functions to inhibit ROS production and inflammatory signaling in breast cancer, thereby reducing metastasis. Methods: Using the highly invasive MDA-MB-231 breast carcinoma model, we ascertained the impact of metformin on cell viability by DNA content analysis and fluorescent dye exclusion. Migration and invasion assays were performed using a modified Boyden chamber assay and metastasis was ascertained using the chorioallantoic membrane (CAM) assay. PGE2 production was measured by Enzyme-Linked Immunosorbent Assay (ELISA). COX2 and ICAM1 levels were determined by flow cytometry immunoassay. Results: Metformin acutely decreased cell viability and caused G2 cell cycle arrest only at high concentrations (10 mM). At 100 µM, however, metformin reduced ICAM1 and COX2 expression, as well as reduced PGE2 production and endogenous mitochondrial ROS production while failing to significantly impact cell viability. Consequently, metformin inhibited migration, invasion in vitro and PGE2-dependent metastasis in CAM assays. Conclusion: At pharmacologically achievable concentrations, metformin does not drastically impact cell viability, but inhibits inflammatory signaling and metastatic progression in breast cancer cells

    Glyceollin I Reverses Epithelial to Mesenchymal Transition in Letrozole Resistant Breast Cancer through ZEB1

    No full text
    Although aromatase inhibitors are standard endocrine therapy for postmenopausal women with early-stage metastatic estrogen-dependent breast cancer, they are limited by the development of drug resistance. A better understanding of this process is critical towards designing novel strategies for disease management. Previously, we demonstrated a global proteomic signature of letrozole-resistance associated with hormone-independence, enhanced cell motility and implications of epithelial mesenchymal transition (EMT). Letrozole-resistant breast cancer cells (LTLT-Ca) were treated with a novel phytoalexin, glyceollin I, and exhibited morphological characteristics synonymous with an epithelial phenotype and decreased proliferation. Letrozole-resistance increased Zinc Finger E-Box Binding Homeobox 1 (ZEB1) expression (4.51-fold), while glyceollin I treatment caused a −3.39-fold reduction. Immunofluorescence analyses resulted of glyceollin I-induced increase and decrease in E-cadherin and ZEB1, respectively. In vivo studies performed in ovariectomized, female nude mice indicated that glyceollin treated tumors stained weakly for ZEB1 and N-cadherin and strongly for E-cadherin. Compared to letrozole-sensitive cells, LTLT-Ca cells displayed enhanced motility, however in the presence of glyceollin I, exhibited a 68% and 83% decrease in invasion and migration, respectively. These effects of glyceollin I were mediated in part by inhibition of ZEB1, thus indicating therapeutic potential of glyceollin I in targeting EMT in letrozole resistant breast cancer
    corecore