1,589 research outputs found
Use of an endotoxin activity assay to identify infection and evaluate outcome in canine ICU patients
CURRENT MAGNIFICATION AND CIRCULATING CURRENTS IN MESOSCOPIC RINGS
We show that several novel effects related to persistent currents can arise
in open systems, which have no analogue in closed or isolated systems. We have
considered a system of a metallic ring coupled to two electron reservoirs. We
show that in the presence of a transport current, persistent currents can flow
in a ring even in the absence of magnetic field. This is related to the current
magnification effect in the ring. In the presence of magnetic field we show
that the amplitude of persistent currents is sensitive to the direction of
current flow from one reservoir to another. Finally we briefly discuss the
persistent currents arising due to two nonclassical effects namely,
Aharonov-Bohm effect and quantum tunneling.Comment: On the basis of talk given by A. M. Jayannavar at "International
Workshop on Novel Physics in Low Dimensional Systems" in Madras(India). Four
figures available on reques
Cloud microphysical effects of turbulent mixing and entrainment
Turbulent mixing and entrainment at the boundary of a cloud is studied by
means of direct numerical simulations that couple the Eulerian description of
the turbulent velocity and water vapor fields with a Lagrangian ensemble of
cloud water droplets that can grow and shrink by condensation and evaporation,
respectively. The focus is on detailed analysis of the relaxation process of
the droplet ensemble during the entrainment of subsaturated air, in particular
the dependence on turbulence time scales, droplet number density, initial
droplet radius and particle inertia. We find that the droplet evolution during
the entrainment process is captured best by a phase relaxation time that is
based on the droplet number density with respect to the entire simulation
domain and the initial droplet radius. Even under conditions favoring
homogeneous mixing, the probability density function of supersaturation at
droplet locations exhibits initially strong negative skewness, consistent with
droplets near the cloud boundary being suddenly mixed into clear air, but
rapidly approaches a narrower, symmetric shape. The droplet size distribution,
which is initialized as perfectly monodisperse, broadens and also becomes
somewhat negatively skewed. Particle inertia and gravitational settling lead to
a more rapid initial evaporation, but ultimately only to slight depletion of
both tails of the droplet size distribution. The Reynolds number dependence of
the mixing process remained weak over the parameter range studied, most
probably due to the fact that the inhomogeneous mixing regime could not be
fully accessed when phase relaxation times based on global number density are
considered.Comment: 17 pages, 10 Postscript figures (figures 3,4,6,7,8 and 10 are in
reduced quality), to appear in Theoretical Computational Fluid Dynamic
zDALY: An adjusted indicator to estimate the burden of zoonotic diseases
The burden of human diseases in populations, or for an individual, is frequently estimated in terms of one of a number of Health Adjusted Life Years (HALYs). The Disability Adjusted Life Year (DALY) is a widely accepted HALY metric and is used by the World Health Organization and the Global Burden of Disease studies. Many human diseases are of animal origin and often cause ill health and production losses in domestic animals. The economic losses due to disease in animals are usually estimated in monetary terms. The monetary impact on animal health is not compatible with HALY approaches used to measure the impact on human health. To estimate the societal burden of zoonotic diseases that have substantial human and animal disease burden we propose methodology which can be accommodated within the DALY framework. Monetary losses due to the animal disease component of a zoonotic disease can be converted to an equivalent metric using a local gross national income per capita deflator. This essentially gives animal production losses a time trade-off for human life years. This is the time required to earn the income needed to replace that financial loss. This can then be assigned a DALY equivalent, termed animal loss equivalents (ALE), and added to the DALY associated with human ill health to give a modified DALY. This is referred to as the “zDALY”. ALEs could also be estimated using willingness-to-pay for animal health or survey tools to estimate the replacement time value for animals with high societal or emotional value (for example pets) that cannot be calculated directly using monetary worth. Thus the zDALY estimates the impact of a zoonotic disease to animal and human health. The losses due to the animal disease component of the modified DALY are straightforward to calculate. A number of worked examples such as echinococcosis, brucellosis, Q fever and cysticercosis from a diverse spectrum of countries with different levels of economic development illustrate the use of the zDALY indicator
A study of the chemiionization reactions of Ca, Sr and Ba with O2(X 3ÎŁ- g)
Chemielectron and chemiion spectra resulting from the reactions of effusive beams of Ca, and Sr and Ba (in their ground 1S states) with ground state molecular oxygen O2(X 3Σ- g) have been recorded using electron spectroscopy and mass spectrometry. The chemielectron spectra are similar for all three reactions exhibiting a strong near-zero energy band and another band at higher electron energies. The chemiion spectra show O+ 2, M+ and M2O+ 2 as the major ions. The total ion current as well as the individual ion intensities, have been recorded as a function of the extraction potential on the reaction cell. The results obtained indicate that the metal oxide dimer ion is the primary chemiion, formed via an associative ionization reaction of a metal atom with a long-lived metal superoxide intermediate MO*2. A two state potential energy curve model is proposed for the M+MO*2 reaction to explain the shape of the experimental electron distribution. © 1994
An assessment of the strength of knots and splices used as eye terminations in a sailing environment
Research into knots, splices and other methods of forming an eye termination has been limited, despite the fact that they are essential and strongly affect the performance of a rope. The aim of this study was to carry out a comprehensive initial assessment of the breaking strength of eye terminations commonly used in a sailing environment, thereby providing direction for further work in the field. Supports for use in a regular tensile testing machine were specially developed to allow individual testing of each sample and a realistic spread of statistical data to be obtained. Over 180 break tests were carried out on four knots (the bowline, double bowline, figure-of-eight loop and perfection loop) and two splices (three-strand eye splice and braid-on-braid splice). The factors affecting their strength were investigated. A statistical approach to the analysis of the results was adopted. The type of knot was found to have a significant effect on the strength. This same effect was seen in both types of rope construction (three-strand and braid-on-braid). Conclusions were also drawn as to the effect of splice length, eye size, manufacturer and rope diameter on the breaking strength of splices. Areas of development and further investigation were identified
Periodic Homogenization for Inertial Particles
We study the problem of homogenization for inertial particles moving in a
periodic velocity field, and subject to molecular diffusion. We show that,
under appropriate assumptions on the velocity field, the large scale, long time
behavior of the inertial particles is governed by an effective diffusion
equation for the position variable alone. To achieve this we use a formal
multiple scale expansion in the scale parameter. This expansion relies on the
hypo-ellipticity of the underlying diffusion. An expression for the diffusivity
tensor is found and various of its properties studied. In particular, an
expansion in terms of the non-dimensional particle relaxation time (the
Stokes number) is shown to co-incide with the known result for passive
(non-inertial) tracers in the singular limit . This requires the
solution of a singular perturbation problem, achieved by means of a formal
multiple scales expansion in Incompressible and potential fields are
studied, as well as fields which are neither, and theoretical findings are
supported by numerical simulations.Comment: 31 pages, 7 figures, accepted for publication in Physica D. Typos
corrected. One reference adde
A Theoretical Review of Rotating Detonation Engines
Rotating detonation engines are a novel device for generating thrust from combustion, in a highly efficient, yet mechanically simple form. This chapter presents a detailed literature review of rotating detonation engines. Particular focus is placed on the theoretical aspects and the fundamental operating principles of these engines. The review covers both experimental and computational studies, in order to identify gaps in current understanding. This will allow the identification of future work that is required to further develop rotating detonation engines
- …