94 research outputs found

    Massard Prairie Restoration and Soil Microbiome Succession

    Get PDF
    We have initially sequenced soil microbial DNA from 4 restored and 4 virgin tallgrass prairie soil samples from Ben Geren Park and Massard Prairie (Fort Smith, AR), respectively. As expected, the soil microbiomes are distinct, with several lineages of nitrogen-fixing bacteria more common in virgin tall grass prairie. However, we predict that as restoration of tallgrass prairie in Ben Geren Park progresses, the soil microbiome of restored prairie will more closely mirror those of the virgin prairie

    The Molecule-Rich Tail of the Peculiar Galaxy NGC 2782 (Arp 215)

    Get PDF
    We present the first detection of a large quantity of molecular gas in the extended tail of an interacting galaxy. Using the NRAO 12m telescope, we have detected CO (1 - 0) at five locations in the eastern tail of the peculiar starburst galaxy NGC 2782. The CO velocities and narrow (FWHM = 50 km/s) line widths in these positions agree with those seen in HI, confirming that the molecular gas is indeed associated with the tail rather than the main disk. As noted previously, the gas in this tail has an apparent `counter-rotation' compared to gas in the core of the galaxy, probably because the tails do not lie in the same plane as the disk. Assuming the standard Galactic conversion N(H2)/I(CO) factor, these observations indicate a total molecular gas mass of 6 X 10**8 M(sun) in this tail. This may be an underestimate of the total H2 mass if the gas is metal-poor. This molecular gas mass, and the implied H2/HI mass ratio of 0.6, are higher than that found in many dwarf irregular galaxies. Comparison with an available H-alpha map of this galaxy, however, shows that the rate of star formation in this feature is extremely low relative to the available molecular gas, compared to L(H-alpha)/M(H2) values for both spiral and irregular galaxies. Thus the timescale for depletion of the gas in this feature is very long.Comment: 19 pages, 6 figures, Latex. To appear in the Astronomical Journa

    Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Oecologia 153 (2007): 643-652, doi:10.1007/s00442-007-0753-8.Long-term fertilization of acidic tussock tundra has led to changes in plant species composition, increases in aboveground production and biomass and substantial losses of soil organic carbon (SOC). Root litter is an important input to SOC pools, though little is known about fine root demography in tussock tundra. In this study, we examined the response of fine root production and live standing fine root biomass to short- and long-term fertilization, as changes in fine root demography may contribute to observed declines in SOC. Live standing fine root biomass increased with long-term fertilization, while fine root production declined, reflecting replacement of the annual fine root system of Eriophorum vaginatum, with the long-lived fine roots of Betula nana. Fine root production increased in fertilized plots during an unusually warm growing season, but remained unchanged in control plots, consistent with observations that B. nana shows a positive response to climate warming. Calculations based on a few simple assumptions suggest changes in fine root demography with long-term fertilization and species replacement could account for between 20 and 39% of observed declines in SOC stocks.This project was supported by National Science Foundation research grants 9810222, 9911681, 0221606 and 0528748

    Development of a Kemp\u27s Ridley Sea Turtle Stock Assessment Model

    Get PDF
    We developed a Kemp’s ridley (Lepidochelys kempii) stock assessment model to evaluate the relative contributions of conservation efforts and other factors toward this critically endangered species’ recovery. The Kemp’s ridley demographic model developed by the Turtle Expert Working Group (TEWG) in 1998 and 2000 and updated for the binational recovery plan in 2011 was modified for use as our base model. The TEWG model uses indices of the annual reproductive population (number of nests) and hatchling recruitment to predict future annual numbers of nests on the basis of a series of assumptions regarding age and maturity, remigration interval, sex ratios, nests per female, juvenile mortality, and a putative ‘‘turtle excluder device effect’’ multiplier starting in 1990. This multiplier was necessary to fit the number of nests observed in 1990 and later. We added the effects of shrimping effort directly, modified by habitat weightings, as a proxy for all sources of anthropogenic mortality. Additional data included in our model were incremental growth of Kemp’s ridleys marked and recaptured in the Gulf of Mexico, and the length frequency of stranded Kemp’s ridleys. We also added a 2010 mortality factor that was necessary to fit the number of nests for 2010 and later (2011 and 2012). Last, we used an empirical basis for estimating natural mortality, on the basis of a Lorenzen mortality curve and growth estimates. Although our model generated reasonable estimates of annual total turtle deaths attributable to shrimp trawling, as well as additional deaths due to undetermined anthropogenic causes in 2010, we were unable to provide a clear explanation for the observed increase in the number of stranded Kemp’s ridleys in recent years, and subsequent disruption of the species’ exponential growth since the 2009 nesting season. Our consensus is that expanded data collection at the nesting beaches is needed and of high priority, and that 2015 be targeted for the next stock assessment to evaluate the 2010 event using more recent nesting and in-water data

    LOFAR 150-MHz observations of SS 433 and W50

    Get PDF
    We present Low-Frequency Array (LOFAR) high-band data over the frequency range 115-189 MHz for the X-ray binary SS 433, obtained in an observing campaign from 2013 February to 2014 May. Our results include a deep, wide-field map, allowing a detailed view of the surrounding supernova remnant W50 at low radio frequencies, as well as a light curve for SS 433 determined from shorter monitoring runs. The complex morphology of W50 is in excellent agreement with previously published higher frequency maps; we find additional evidence for a spectral turnover in the eastern wing, potentially due to foreground free-free absorption. Furthermore, SS 433 is tentatively variable at 150 MHz, with both a debiased modulation index of 11 per cent and a Χ 2 probability of a flat light curve of 8.2 × 10 -3 . By comparing the LOFAR flux densities with contemporaneous observations carried out at 4800 MHz with the RATAN-600 telescope, we suggest that an observed ~0.5-1 Jy rise in the 150-MHz flux density may correspond to sustained flaring activity over a period of approximately 6 months at 4800 MHz. However, the increase is too large to be explained with a standard synchrotron bubble model. We also detect a wealth of structure along the nearby Galactic plane, including the most complete detection to date of the radio shell of the candidate supernova remnant G38.7-1.4. This further demonstrates the potential of supernova remnant studies with the current generation of low-frequency radio telescopes

    When Plans Change: Examining How People Evaluate Timing Changes in Work Organizations

    Full text link

    The Structure of Chloroplast DNA Molecules and the Effects of Light on the Amount of Chloroplast DNA during Development in Medicago truncatula1[C][OA]

    No full text
    We used pulsed-field gel electrophoresis and restriction fragment mapping to analyze the structure of Medicago truncatula chloroplast DNA (cpDNA). We find most cpDNA in genome-sized linear molecules, head-to-tail genomic concatemers, and complex branched forms with ends at defined sites rather than at random sites as expected from broken circles. Our data suggest that cpDNA replication is initiated predominantly on linear DNA molecules with one of five possible ends serving as putative origins of replication. We also used 4â€Č,6-diamidino-2-phenylindole staining of isolated plastids to determine the DNA content per plastid for seedlings grown in the dark for 3 d and then transferred to light before being returned to the dark. The cpDNA content in cotyledons increased after 3 h of light, decreased with 9 h of light, and decreased sharply with 24 h of light. In addition, we used real-time quantitative polymerase chain reaction to determine cpDNA levels of cotyledons in dark- and light-grown (low white, high white, blue, and red light) seedlings, as well as in cotyledons and leaves from plants grown in a greenhouse. In white, blue, and red light, cpDNA increased initially and then declined, but cpDNA declined further in white and blue light while remaining constant in red light. The initial decline in cpDNA occurred more rapidly with increased white light intensity, but the final DNA level was similar to that in less intense light. The patterns of increase and then decrease in cpDNA level during development were similar for cotyledons and leaves. We conclude that the absence in M. truncatula of the prominent inverted repeat cpDNA sequence found in most plant species does not lead to unusual properties with respect to the structure of plastid DNA molecules, cpDNA replication, or the loss of cpDNA during light-stimulated chloroplast development

    Pseudomonas aeruginosa Induces Localized Immunosuppression during Pneumonia▿ †

    No full text
    Hospital-acquired bacterial pneumonia is a common and serious complication of modern medical care. Many aspects of such infections remain unclear, including the mechanisms by which invading pathogens resist clearance by the innate immune response and the tendency of the infections to be polymicrobial. Here, we used a mouse model of infection to show that Pseudomonas aeruginosa, a leading cause of hospital-acquired pneumonia, interferes with the ability of recruited phagocytic cells to eradicate bacteria from the lung. Early in infection, phagocytic cells, predominantly neutrophils, are recruited to the lungs but are incapacitated when they enter the airways by the P. aeruginosa toxin ExoU. The resulting paucity of functioning phagocytes allows P. aeruginosa to persist within the lungs and results in local immunosuppression that facilitates superinfection with less-pathogenic bacteria. Together, our results provide explanations for previous reports linking ExoU-secreting P. aeruginosa with more severe pulmonary infections and for the tendency of hospital-acquired pneumonia to be polymicrobial
    • 

    corecore