554 research outputs found

    Pain severity predicts depressive symptoms over and above individual illnesses and multimorbidity in older adults.

    Full text link
    BACKGROUND: Multi-morbidity in older adults is commonly associated with depressed mood. Similarly, subjective reports of pain are also associated with both physical illness and increased depressive symptoms. However, whether pain independently contributes to the experience of depression in older people with multi-morbidity has not been studied. METHODS: In this study, participants were 1281 consecutive older adults presenting to one of 19 primary care services in Australia (recruitment rate = 75%). Participants were asked to indicate the presence of a number of common chronic illnesses, to rate their current pain severity and to complete the Geriatric Depression Scale. RESULTS: Results confirmed that the number of medical illnesses reported was strongly associated with depressive symptoms. Twenty-six percent of participants with multi-morbidity scored in the clinical range for depressive symptoms in comparison to 15% of participants with no illnesses or a single illness. In regression analyses, the presence of chronic pain (t = 5.969, p < 0.0005), diabetes (t = 4.309, p < 0.0005), respiratory (t = 3.720, p < 0.0005) or neurological illness (t = 2.701, p = 0.007) were all independent contributors to depressive symptoms. Even when controlling for each individual illness, and the overall number of illnesses (t = 2.207, p = 0.028), pain severity remained an independent predictor of depressed mood (F change = 28.866, p < 0.0005, t = 5.373, p < 0.0005). CONCLUSIONS: Physicians should consider screening for mood problems amongst those with multi-morbidity, particularly those who experience pain

    Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

    Get PDF
    Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax

    Targeted prevention of common mental health disorders in university students: randomised controlled trial of a transdiagnostic trait-focused web-based intervention

    Get PDF
    Background: A large proportion of university students show symptoms of common mental disorders, such as depression, anxiety, substance use disorders and eating disorders. Novel interventions are required that target underlying factors of multiple disorders.&lt;p&gt;&lt;/p&gt; Aims: To evaluate the efficacy of a transdiagnostic trait-focused web-based intervention aimed at reducing symptoms of common mental disorders in university students.&lt;p&gt;&lt;/p&gt; Method: Students were recruited online (n = 1047, age: M = 21.8, SD = 4.2) and categorised into being at high or low risk for mental disorders based on their personality traits. Participants were allocated to a cognitive-behavioural trait-focused (n = 519) or a control intervention (n = 528) using computerised simple randomisation. Both interventions were fully automated and delivered online (trial registration: ISRCTN14342225). Participants were blinded and outcomes were self-assessed at baseline, at 6 weeks and at 12 weeks after registration. Primary outcomes were current depression and anxiety, assessed on the Patient Health Questionnaire (PHQ9) and Generalised Anxiety Disorder Scale (GAD7). Secondary outcome measures focused on alcohol use, disordered eating, and other outcomes.&lt;p&gt;&lt;/p&gt; Results: Students at high risk were successfully identified using personality indicators and reported poorer mental health. A total of 520 students completed the 6-week follow-up and 401 students completed the 12-week follow-up. Attrition was high across intervention groups, but comparable to other web-based interventions. Mixed effects analyses revealed that at 12-week follow up the trait-focused intervention reduced depression scores by 3.58 (p&#60;.001, 95%CI [5.19, 1.98]) and anxiety scores by 2.87 (p = .018, 95%CI [1.31, 4.43]) in students at high risk. In high-risk students, between group effect sizes were 0.58 (depression) and 0.42 (anxiety). In addition, self-esteem was improved. No changes were observed regarding the use of alcohol or disordered eating.&lt;p&gt;&lt;/p&gt; Conclusions This study suggests that a transdiagnostic web-based intervention for university students targeting underlying personality risk factors may be a promising way of preventing common mental disorders with a low-intensity intervention

    Random Matrix Theory for the Hermitian Wilson Dirac Operator and the chGUE-GUE Transition

    Full text link
    We introduce a random two-matrix model interpolating between a chiral Hermitian (2n+nu)x(2n+nu) matrix and a second Hermitian matrix without symmetries. These are taken from the chiral Gaussian Unitary Ensemble (chGUE) and Gaussian Unitary Ensemble (GUE), respectively. In the microscopic large-n limit in the vicinity of the chGUE (which we denote by weakly non-chiral limit) this theory is in one to one correspondence to the partition function of Wilson chiral perturbation theory in the epsilon regime, such as the related two matrix-model previously introduced in refs. [20,21]. For a generic number of flavours and rectangular block matrices in the chGUE part we derive an eigenvalue representation for the partition function displaying a Pfaffian structure. In the quenched case with nu=0,1 we derive all spectral correlations functions in our model for finite-n, given in terms of skew-orthogonal polynomials. The latter are expressed as Gaussian integrals over standard Laguerre polynomials. In the weakly non-chiral microscopic limit this yields all corresponding quenched eigenvalue correlation functions of the Hermitian Wilson operator.Comment: 27 pages, 4 figures; v2 typos corrected, published versio

    Metabolic state alters economic decision making under risk in humans

    Get PDF
    Background: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans. Methodology/Principal Findings: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake), and circulating leptin levels (providing an assay of energy reserves). We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively. Conclusions/Significance: We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has significant implications for both real-world economic transactions and for aberrant decision-making in eating disorders and obesity

    Identification of Mechanosensitive Genes during Embryonic Bone Formation

    Get PDF
    Although it is known that mechanical forces are needed for normal bone development, the current understanding of how biophysical stimuli are interpreted by and integrated with genetic regulatory mechanisms is limited. Mechanical forces are thought to be mediated in cells by “mechanosensitive” genes, but it is a challenge to demonstrate that the genetic regulation of the biological system is dependant on particular mechanical forces in vivo. We propose a new means of selecting candidate mechanosensitive genes by comparing in vivo gene expression patterns with patterns of biophysical stimuli, computed using finite element analysis. In this study, finite element analyses of the avian embryonic limb were performed using anatomically realistic rudiment and muscle morphologies, and patterns of biophysical stimuli were compared with the expression patterns of four candidate mechanosensitive genes integral to bone development. The expression patterns of two genes, Collagen X (ColX) and Indian hedgehog (Ihh), were shown to colocalise with biophysical stimuli induced by embryonic muscle contractions, identifying them as potentially being involved in the mechanoregulation of bone formation. An altered mechanical environment was induced in the embryonic chick, where a neuromuscular blocking agent was administered in ovo to modify skeletal muscle contractions. Finite element analyses predicted dramatic changes in levels and patterns of biophysical stimuli, and a number of immobilised specimens exhibited differences in ColX and Ihh expression. The results obtained indicate that computationally derived patterns of biophysical stimuli can be used to inform a directed search for genes that may play a mechanoregulatory role in particular in vivo events or processes. Furthermore, the experimental data demonstrate that ColX and Ihh are involved in mechanoregulatory pathways and may be key mediators in translating information from the mechanical environment to the molecular regulation of bone formation in the embryo

    CD28 Costimulation Regulates Genome-Wide Effects on Alternative Splicing

    Get PDF
    CD28 is the major costimulatory receptor required for activation of naïve T cells, yet CD28 costimulation affects the expression level of surprisingly few genes over those altered by TCR stimulation alone. Alternate splicing of genes adds diversity to the proteome and contributes to tissue-specific regulation of genes. Here we demonstrate that CD28 costimulation leads to major changes in alternative splicing during activation of naïve T cells, beyond the effects of TCR alone. CD28 costimulation affected many more genes through modulation of alternate splicing than by modulation of transcription. Different families of biological processes are over-represented among genes alternatively spliced in response to CD28 costimulation compared to those genes whose transcription is altered, suggesting that alternative splicing regulates distinct biological effects. Moreover, genes dependent upon hnRNPLL, a global regulator of splicing in activated T cells, were enriched in T cells activated through TCR plus CD28 as compared to TCR alone. We show that hnRNPLL expression is dependent on CD28 signaling, providing a mechanism by which CD28 can regulate splicing in T cells and insight into how hnRNPLL can influence signal-induced alternative splicing in T cells. The effects of CD28 on alternative splicing provide a newly appreciated means by which CD28 can regulate T cell responses

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Breeding histories and selection criteria for oilseed rape in Europe and China identified by genome wide pedigree dissection

    Get PDF
    Selection breeding has played a key role in the improvement of seed yield and quality in oilseed rape (Brassica napus L.). We genotyped Tapidor (European), Ningyou7 (Chinese) and their progenitors with the Brassica 60 K Illumina Infinium SNP array and mapped a total of 29,347 SNP markers onto the reference genome of Darmor-bzh. Identity by descent (IBD) refers to a haplotype segment of a chromosome inherited from a shared common ancestor. IBDs identified on the C subgenome were larger than those on the A subgenome within both the Tapidor and Ningyou7 pedigrees. IBD number and length were greater in the Ningyou7 pedigree than in the Tapidor pedigree. Seventy nine QTLs for flowering time, seed quality and root morphology traits were identified in the IBDs of Tapidor and Ningyou7. Many more candidate genes had been selected within the Ningyou7 pedigree than within the Tapidor pedigree. These results highlight differences in the transfer of favorable gene clusters controlling key traits during selection breeding in Europe and China
    corecore