659 research outputs found
Transgenic Overexpression of LARGE Induces alpha-Dystroglycan Hyperglycosylation in Skeletal and Cardiac Muscle
Background: LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of alpha-dystroglycan. Overexpression of LARGE induces hyperglycosylation of alpha-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders. Pharmacological strategies to upregulate Large expression are also being explored.Methodology/Principal Findings: In order to asses the safety and efficacy of long term LARGE over-expression in vivo, we have generated four mouse lines expressing a human LARGE transgene. On observation, LARGE transgenic mice were indistinguishable from the wild type littermates. Tissue analysis from young mice of all four lines showed a variable pattern of transgene expression: highest in skeletal and cardiac muscles, and lower in brain, kidney and liver. Transgene expression in striated muscles correlated with alpha-dystroglycan hyperglycosylation, as determined by immunoreactivity to antibody IIH6 and increased laminin binding on an overlay assay. Other components of the dystroglycan complex and extracellular matrix ligands were normally expressed, and general muscle histology was indistinguishable from wild type controls. Further detailed muscle physiological analysis demonstrated a loss of force in response to eccentric exercise in the older, but not in the younger mice, suggesting this deficit developed over time. However this remained a subclinical feature as no pathology was observed in older mice in any muscles including the diaphragm, which is sensitive to mechanical load-induced damage.Conclusions/Significance: This work shows that potential therapies in the dystroglycanopathies based on LARGE upregulation and alpha-dystroglycan hyperglycosylation in muscle should be safe
Characterisation of the pathogenic effects of the in vivo expression of an ALS-linked mutation in D-amino acid oxidase: Phenotype and loss of spinal cord motor neurons
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset neuromuscular disorder characterised by selective loss of motor neurons leading to fatal paralysis. Current therapeutic approaches are limited in their effectiveness. Substantial advances in understanding ALS disease mechanisms has come from the identification of pathogenic mutations in dominantly inherited familial ALS (FALS). We previously reported a coding mutation in D-amino acid oxidase (DAOR199W) associated with FALS. DAO metabolises D-serine, an essential co-agonist at the N-Methyl-D-aspartic acid glutamate receptor subtype (NMDAR). Using primary motor neuron cultures or motor neuron cell lines we demonstrated that expression of DAOR199W, promoted the formation of ubiquitinated protein aggregates, activated autophagy and increased apoptosis. The aim of this study was to characterise the effects of DAOR199W in vivo, using transgenic mice overexpressing DAOR199W. Marked abnormal motor features, e.g. kyphosis, were evident in mice expressing DAOR199W, which were associated with a significant loss (19%) of lumbar spinal cord motor neurons, analysed at 14 months. When separated by gender, this effect was greater in females (26%; p< 0.0132). In addition, we crossed the DAOR199W transgenic mouse line with the SOD1G93A mouse model of ALS to determine whether the effects of SOD1G93A were potentiated in the double transgenic line (DAOR199W/SOD1G93A). Although overall survival was not affected, onset of neurological signs was significantly earlier in female double transgenic animals than their female SOD1G93A littermates (125 days vs 131 days, P = 0.0239). In summary, some significant in vivo effects of DAOR199W on motor neuron function (i.e. kyphosis and loss of motor neurons) were detected which were most marked in females and could contribute to the earlier onset of neurological signs in double transgenic females compared to SOD1G93A littermates, highlighting the importance of recognizing gender effects present in animal models of ALS
Telomere shortening occurs in Asian Indian Type 2 diabetic patients
Aim: Telomere shortening has been reported in several diseases including atherosclerosis and Type 1 diabetes. Asian Indians have an increased predilection for Type 2 diabetes and premature coronary artery disease. The aim of this study was to determine whether telomeric shortening occurs in Asian Indian Type 2 diabetic patients.
Methods: Using Southern‐blot analysis we determined mean terminal restriction fragment (TRF) length, a measure of average telomere size, in leucocyte DNA. Type 2 diabetic patients without any diabetes‐related complications (n = 40) and age‐ and sex‐matched control non‐diabetic subjects (n = 40) were selected from the Chennai Urban Rural Epidemiology Study (CURES). Plasma level of malondialdehyde (MDA), a marker of lipid peroxidation, was measured by TBARS (thiobarbituric acid reactive substances) using a fluorescence method.
Results: Mean (± SE) TRF lengths of the Type 2 diabetic patients (6.01 ± 0.2 kb) were significantly shorter than those of the control subjects (9.11 ± 0.6 kb) (P = 0.0001). Among the biochemical parameters, only levels of TBARS showed a negative correlation with shortened telomeres in the diabetic subjects (r = −0.36; P = 0.02). However, telomere lengths were negatively correlated with insulin resistance (HOMA‐IR) (r = −0.4; P = 0.01) and age (r = −0.3; P = 0.058) and positively correlated with HDL levels (r = 0.4; P = 0.01) in the control subjects. Multiple linear regression (MLR) analysis revealed diabetes to be significantly (P < 0.0001) associated with shortening of TRF lengths.
Conclusions: Telomere shortening occurs in Asian Indian Type 2 diabetic patients
Poloxomer 188 Has a Deleterious Effect on Dystrophic Skeletal Muscle Function
Duchenne muscular dystrophy (DMD) is an X-linked, fatal muscle wasting disease for which there is currently no cure and limited palliative treatments. Poloxomer 188 (P188) is a tri-block copolymer that has been proposed as a potential treatment for cardiomyopathy in DMD patients. Despite the reported beneficial effects of P188 on dystrophic cardiac muscle function, the effects of P188 on dystrophic skeletal muscle function are relatively unknown. Mdx mice were injected intraperitoneally with 460 mg/kg or 30 mg/kg P188 dissolved in saline, or saline alone (control). The effect of single-dose and 2-week daily treatment was assessed using a muscle function test on the Tibialis Anterior (TA) muscle in situ in anaesthetised mice. The test comprises a warm up, measurement of the force-frequency relationship and a series of eccentric contractions with a 10% stretch that have previously been shown to cause a drop in maximum force in mdx mice. After 2 weeks of P188 treatment at either 30 or 460 mg/kg/day the drop in maximum force produced following eccentric contractions was significantly greater than that seen in saline treated control mice (P = 0.0001). Two week P188 treatment at either dose did not significantly change the force-frequency relationship or maximum isometric specific force produced by the TA muscle. In conclusion P188 treatment increases susceptibility to contraction-induced injury following eccentric contractions in dystrophic skeletal muscle and hence its suitability as a potential therapeutic for DMD should be reconsidered
Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes.
INTRODUCTION: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. RESULTS: We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. CONCLUSION: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study
Evaluation of the clinical and cost effectiveness of intermediate care clinics for diabetes (ICCD): A multicentre cluster randomised controlled trial
Background Configuring high quality care for the rapidly increasing number of people with type 2 diabetes (T2D) is a major challenge worldwide for both providers and commissioners. In the UK, about two thirds of people with T2D are managed entirely in primary care, with wide variation in management strategies and achievement of targets. Pay for performance, introduced in 2004, initially resulted in improvements but disparities exist in ethnic minorities and the improvements are levelling off. Community based, intermediate care clinics for diabetes (ICCDs) were considered one solution and are functioning across the UK. However, there is no randomised trial evidence for the effectiveness of such clinics. Trial Design, Methods and Findings This is a cluster-randomised trial, involving 3 primary care trusts, with 49 general practices randomised to usual care (n = 25) or intervention (ICCDs; n = 24). All eligible adult patients with T2D were invited; 1997 were recruited and 1280 followed-up after 18-months intervention. Primary outcome: achievement of all three of the NICE targets [(HbA1c≤7.0%/53 mmol/mol; Blood Pressure <140/80 mmHg; cholesterol <154 mg/dl (4 mmol/l)]. Primary outcome was achieved in 14.3% in the intervention arm vs. 9.3% in the control arm (p = 0.059 after adjustment for covariates). The odds ratio (95% CI) for achieving primary outcome in the intervention group was 1.56 (0.98, 2.49). Primary care and community clinic costs were significantly higher in the intervention group, but there were no significant differences in hospital costs or overall healthcare costs. An incremental cost-effectiveness ratio (ICER) of +£7,778 per QALY gained, indicated ICCD was marginally more expensive at producing health gain. Conclusions Intermediate care clinics can contribute to improving target achievement in patients with diabetes. Further work is needed to investigate the optimal scale and organisational structure of ICCD services and whether, over time, their role may change as skill levels in primary care increase. Trial Registration ClinicalTrials.gov NCT00945204; National Research Register (NRR) M0014178167.National Institute of Health Research Project number: SDO/110/2005. Initial service for support costs was provided by Department of health.NHS Leicester City, Thames Valley Diabetes Research Network (TVDRN), West Midlands South Comprehensive Local Research Network (CLRN), Primary Care Research Network (PCRN) and DIERT charity provided additional support for the successful completion of the study
Estimating Dengue Transmission Intensity from Case-Notification Data from Multiple Countries
Despite being the most widely distributed mosquito-borne viral infection, estimates of dengue transmission intensity and associated burden remain ambiguous. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing the burden of disease and the likely impact of interventions.We estimated the force of infection (λ) and corresponding basic reproduction numbers (R0) by fitting catalytic models to age-stratified incidence data identified from the literature. We compared estimates derived from incidence and seroprevalence data and assessed the level of under-reporting of dengue disease. In addition, we estimated the relative contribution of primary to quaternary infections to the observed burden of dengue disease incidence. The majority of R0 estimates ranged from one to five and the force of infection estimates from incidence data were consistent with those previously estimated from seroprevalence data. The baseline reporting rate (or the probability of detecting a secondary infection) was generally low (<25%) and varied within and between countries.As expected, estimates varied widely across and within countries, highlighting the spatio-temporally heterogeneous nature of dengue transmission. Although seroprevalence data provide the maximum information, the incidence models presented in this paper provide a method for estimating dengue transmission intensity from age-stratified incidence data, which will be an important consideration in areas where seroprevalence data are not available
Sex-specific relevance of diabetes to occlusive vascular and other mortality : a collaborative meta-analysis of individual data from 980 793 adults from 68 prospective studies
Background: Several studies have shown that diabetes confers a higher relative risk of vascular mortality among women than among men, but whether this increased relative risk in women exists across age groups and within defined levels of other risk factors is uncertain. We aimed to determine whether differences in established risk factors, such as blood pressure, BMI, smoking, and cholesterol, explain the higher relative risks of vascular mortality among women than among men.
Methods: In our meta-analysis, we obtained individual participant-level data from studies included in the Prospective Studies Collaboration and the Asia Pacific Cohort Studies Collaboration that had obtained baseline information on age, sex, diabetes, total cholesterol, blood pressure, tobacco use, height, and weight. Data on causes of death were obtained from medical death certificates. We used Cox regression models to assess the relevance of diabetes (any type) to occlusive vascular mortality (ischaemic heart disease, ischaemic stroke, or other atherosclerotic deaths) by age, sex, and other major vascular risk factors, and to assess whether the associations of blood pressure, total cholesterol, and body-mass index (BMI) to occlusive vascular mortality are modified by diabetes.
Findings: Individual participant-level data were analysed from 980793 adults. During 9 center dot 8 million person-years of follow-up, among participants aged between 35 and 89 years, 19686 (25 center dot 6%) of 76965 deaths were attributed to occlusive vascular disease. After controlling for major vascular risk factors, diabetes roughly doubled occlusive vascular mortality risk among men (death rate ratio [RR] 2 center dot 10, 95% CI 1 center dot 97-2 center dot 24) and tripled risk among women (3 center dot 00, 2 center dot 71-3 center dot 33; x(2) test for heterogeneity p<0 center dot 0001). For both sexes combined, the occlusive vascular death RRs were higher in younger individuals (aged 35-59 years: 2 center dot 60, 2 center dot 30-2 center dot 94) than in older individuals (aged 70-89 years: 2 center dot 01, 1 center dot 85-2 center dot 19; p=0 center dot 0001 for trend across age groups), and, across age groups, the death RRs were higher among women than among men. Therefore, women aged 35-59 years had the highest death RR across all age and sex groups (5 center dot 55, 4 center dot 15-7 center dot 44). However, since underlying confounder-adjusted occlusive vascular mortality rates at any age were higher in men than in women, the adjusted absolute excess occlusive vascular mortality associated with diabetes was similar for men and women. At ages 35-59 years, the excess absolute risk was 0 center dot 05% (95% CI 0 center dot 03-0 center dot 07) per year in women compared with 0 center dot 08% (0 center dot 05-0 center dot 10) per year in men; the corresponding excess at ages 70-89 years was 1 center dot 08% (0 center dot 84-1 center dot 3 2) per year in women and 0 center dot 91% (0 center dot 77-1 center dot 05) per year in men. Total cholesterol, blood pressure, and BMI each showed continuous log-linear associations with occlusive vascular mortality that were similar among individuals with and without diabetes across both sexes.
Interpretation: Independent of other major vascular risk factors, diabetes substantially increased vascular risk in both men and women. Lifestyle changes to reduce smoking and obesity and use of cost-effective drugs that target major vascular risks (eg, statins and antihypertensive drugs) are important in both men and women with diabetes, but might not reduce the relative excess risk of occlusive vascular disease in women with diabetes, which remains unexplained
Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks
A novel automated rodent tracker (ART), demonstrated in a mouse model of amyotrophic lateral sclerosis.
Background Generating quantitative metrics of rodent locomotion and general behaviours from video footage is important in behavioural neuroscience studies. However, there is not yet a free software system that can process large amounts of video data with minimal user interventions. New method Here we propose a new, automated rodent tracker (ART) that uses a simple rule-based system to quickly and robustly track rodent nose and body points, with minimal user input. Tracked points can then be used to identify behaviours, approximate body size and provide locomotion metrics, such as speed and distance. Results ART was demonstrated here on video recordings of a SOD1 mouse model, of amyotrophic lateral sclerosis, aged 30, 60, 90 and 120 days. Results showed a robust decline in locomotion speeds, as well as a reduction in object exploration and forward movement, with an increase in the time spent still. Body size approximations (centroid width), showed a significant decrease from P30. Comparison with existing method(s) ART performed to a very similar accuracy as manual tracking and Ethovision (a commercially available alternative), with average differences in coordinate points of 0.6 and 0.8 mm, respectively. However, it required much less user intervention than Ethovision (6 as opposed to 30 mouse clicks) and worked robustly over more videos. Conclusions ART provides an open-source option for behavioural analysis of rodents, performing to the same standards as commercially available software. It can be considered a validated, and accessible, alternative for researchers for whom non-invasive quantification of natural rodent behaviour is desirable
- …
