196 research outputs found

    Supernovae in Deep Hubble Space Telescope Galaxy Cluster Fields: Cluster Rates and Field Counts

    Get PDF
    We have searched for high-redshift supernova (SN) candidates in multiple deep Hubble Space Telescope (HST) archival images of nine galaxy-cluster fields. We detect six apparent SNe, with I814 between 21.6 and 28.4 mag. There is roughly 1 SN per deep (flux limit I814 > 26 mag), doubly-imaged, WFPC2 cluster field. Two SNe are associated with cluster galaxies (at redshifts z=0.18 and z=0.83), three are probably in galaxies not in the clusters (at z=0.49, z=0.60, and z=0.98), and one is at unknown z. After accounting for observational efficiencies and uncertainties (statistical and systematic) we derive the rate of type-Ia SNe within the projected central 500 kpc of rich clusters: R=0.20(+0.84)(-0.19) SNu in clusters at z=0.18 to 0.37, and R=0.41(+1.23)(-0.39) SNu in clusters at z=0.83 to 1.27 (95 per cent confidence interval; H_0=50; 1 SNu = 1 SN per century per 10^10 L_B_sun). Combining the two redshift bins, the SN rate at a mean redshift of z=0.41 is R(z=0.41) = 0.30(+0.58)(-0.28) SNu. The upper bounds argue against SNe-Ia being the dominant source of the large iron mass observed in the intra-cluster medium. We also compare our observed counts of field SNe (i.e., non-cluster SNe of all types) to recent model predictions. The observed field count is zero or one SN with I814 < 26 mag, and 1 to 3 SNe with I814 < 27 mag. These counts are about two times lower than some of the predictions. Since the counts at these magnitudes are likely dominated by type-II SNe, our observations may suggest obscuration of distant SNe-II, or a SN-II luminosity distribution devoid of a large high-luminosity tail.Comment: MNRAS, in press. Small modifications in final version include redshifts for all five detected SN host galaxies, upward revision of cluster SN-Ia rates, and some changes in field SN count

    Incorporating Systems Engineering Methodologies to Increase the Transferability of Journey Planners

    Get PDF
    AbstractOne characteristic that is highly desired in transportation-related applications, and particularly journey planners, is transferability – i.e., the capacity to be used with minimal modification in different locations. To achieve transferability, the initial design must take into account all factors that may diverge between locations, including existing modes of transport, the availability of required data, the technological habits of users, etc. In consequence, a highly transferable system is difficult and expensive to develop and maintain. A very flexible initial design, one ensuring low-cost adaptability of the system for different cities, regions, or countries, might not be cost-effective. On the other hand, a rigid design, tailored for a specific location, might act as a barrier to implementing the system elsewhere. This dilemma has motivated researchers to seek a structured process for selecting the most promising design, one that will realize the benefits of transferability while minimizing development costs.One of the fundamental building blocks of structured design in SE is requirements-design exploration. This paper evaluates the use of Multi-Attribute Tradespace Exploration (MATE), a leading design exploration process, for the effective design of journey planners.We examine the process of changeability assessment (e.g., transferability) in light of the goals of journey planning from the point of view of different stakeholders: travelers, private developers, and transport authorities. The analysis demonstrates how tradespace exploration can also be used to identify specific designs that bridge the gap between the public and private sectors and provide value over time to all parties. Moreover, when specific concerns of public authorities are not met, tradespace exploration can reveal measures the public sector can take (financial or others) for making their preferred design attractive to the private sector as well

    A photometric search for transients in galaxy clusters

    Full text link
    We have begun a program to search for supernovae and other transients in the fields of galaxy clusters with the 2.3m Bok Telescope on Kitt Peak. We present our automated photometric methods for data reduction, efficiency characterization, and initial spectroscopy. With this program, we aim to ultimately identify \sim25-35 cluster SN Ia (\sim10 of which will be intracluster, hostless events) and constrain the SN Ia rate associated with old, passive stellar populations. With these measurements we will constrain the relative contribution of hostless and hosted SN Ia to the metal enrichment of the intracluster medium. In the current work, we have identified a central excess of transient events within 1.25r2001.25 r_{200} in our cluster fields after statistically subtracting out the 'background' transient rate taken from an off-cluster CCD chip. Based on the published rate of SN Ia for cluster populations we estimate that \sim20 percent of the excess cluster transients are due to cluster SN Ia, a comparable fraction to core collapse (CC) supernovae and the remaining are likely to be active galactic nuclei. Interestingly, we have identified three intracluster SN candidates, all of which lay beyond R>r200R>r_{200}. These events, if truly associated with the cluster, indicate a large deficit of intracluster (IC) SN at smaller radii, and may be associated with the IC stars of infalling groups or indicate that the intracluster light (ICL) in the cluster outskirts is actively forming stars which contribute CC SN or prompt SN Ia.Comment: Updated to match accepted version; 26 pages, 14 figures, AJ accepte

    The Effects of UV Radiation on Chloroplast Clumping and Photosynthesis in the Seagrass Halophila stipulacea

    Get PDF
    Since potentially harmful ultraviolet radiation (UVR, 280–400 nm) and high photosynthetically active radiation (PAR, 400–700 nm) are present in the shallow waters of the Gulf of Aqaba where part of the seagrass Halophila stipulacea's population thrives, we examined the effects of high PAR with and without UVR on its photosynthesis and midday chloroplast “clumping phenomenon” (Sharon and Beer 2008). It was found that midday clumping occurred only under high PAR in the presence of UVR, which resulted in a 44% reduction in the absorption cross section (or absorption factor, AF) of the leaves and, accordingly, a parallel lowering of midday electron transport rates (ETR). In addition, UVR had a direct effect on the photosynthetic apparatus by lowering quantum yields and, thus, ETRs, while pigment relations remained unaltered. We conclude that the potentially harmful effects of UVR and high PAR on the photosynthetic apparatus of Halophila stipulacea are mitigated by their activation of chloroplast clumping, which functions as a means of protecting most chloroplasts from high irradiances, including UVR

    Intracluster supernovae in the Multi-epoch Nearby Cluster Survey

    Full text link
    The Multi-Epoch Nearby Cluster Survey (MENeaCS) has discovered twenty-three cluster Type Ia supernovae (SNe) in the 58 X-ray selected galaxy clusters (0.05 < z < 0.15) surveyed. Four of our SN Ia events have no host galaxy on close inspection, and are likely intracluster SNe. Deep image stacks at the location of the candidate intracluster SNe put upper limits on the luminosities of faint hosts, with M_{r} > -13.0 mag and M_{g} > -12.5 mag in all cases. For such limits, the fraction of the cluster luminosity in faint dwarfs below our detection limit is <0.1%, assuming a standard cluster luminosity function. All four events occurred within ~600 kpc of the cluster center (projected), as defined by the position of the brightest cluster galaxy, and are more centrally concentrated than the cluster SN Ia population as a whole. After accounting for several observational biases that make intracluster SNe easier to discover and spectroscopically confirm, we calculate an intracluster stellar mass fraction of 0.16^{+0.13}_{-0.09} (68% CL) for all objects within R_{200}. If we assume that the intracluster stellar population is exclusively old, and the cluster galaxies themselves have a mix of stellar ages, we derive an upper limit on the intracluster stellar mass fraction of <0.47 (84% one-sided CL). When combined with the intragroup SNe results of McGee & Balogh, we confirm the declining intracluster stellar mass fraction as a function of halo mass reported by Gonzalez and collaborators. (Abridged)Comment: 24 pages, 8 figures, ApJ publishe

    The supernova rate in local galaxy clusters

    Get PDF
    We report a measurement of the supernova (SN) rates (Ia and core-collapse) in galaxy clusters based on the 136 SNe of the sample described in Cappellaro et al. (1999) and Mannucci et al. (2005). Early-type cluster galaxies show a type Ia SN rate (0.066 SNuM) similar to that obtained by Sharon et al. (2007) and more than 3 times larger than that in field early-type galaxies (0.019 SNuM). This difference has a 98% statistical confidence level. We examine many possible observational biases which could affect the rate determination, and conclude that none of them is likely to significantly alter the results. We investigate how the rate is related to several properties of the parent galaxies, and find that cluster membership, morphology and radio power all affect the SN rate, while galaxy mass has no measurable effect. The increased rate may be due to galaxy interactions in clusters, inducing either the formation of young stars or a different evolution of the progenitor binary systems. We present the first measurement of the core-collapse SN rate in cluster late-type galaxies, which turns out to be comparable to the rate in field galaxies. This suggests that no large systematic difference in the initial mass function exists between the two environments.Comment: MNRAS, revised version after referee's comment

    The Type Ia Supernova Rate in Redshift 0.5--0.9 Galaxy Clusters

    Get PDF
    Supernova (SN) rates are potentially powerful diagnostics of metal enrichment and SN physics, particularly in galaxy clusters with their deep, metal-retaining potentials and relatively simple star-formation histories. We have carried out a survey for supernovae (SNe) in galaxy clusters, at a redshift range 0.5<z<0.9, using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. We reimaged a sample of 15 clusters that were previously imaged by ACS, thus obtaining two to three epochs per cluster, in which we discovered five likely cluster SNe, six possible cluster SNe Ia, two hostless SN candidates, and several background and foreground events. Keck spectra of the host galaxies were obtained to establish cluster membership. We conducted detailed efficiency simulations, and measured the stellar luminosities of the clusters using Subaru images. We derive a cluster SN rate of 0.35 SNuB +0.17/-0.12 (statistical) \pm0.13 (classification) \pm0.01 (systematic) [where SNuB = SNe (100 yr 10^10 L_B_sun)^-1] and 0.112 SNuM +0.055/-0.039 (statistical) \pm0.042 (classification) \pm0.005 (systematic) [where SNuM = SNe (100 yr 10^10 M_sun)^-1]. As in previous measurements of cluster SN rates, the uncertainties are dominated by small-number statistics. The SN rate in this redshift bin is consistent with the SN rate in clusters at lower redshifts (to within the uncertainties), and shows that there is, at most, only a slight increase of cluster SN rate with increasing redshift. The low and fairly constant SN Ia rate out to z~1 implies that the bulk of the iron mass in clusters was already in place by z~1. The recently observed doubling of iron abundances in the intracluster medium between z=1 and 0, if real, is likely the result of redistribution of existing iron, rather than new production of iron.Comment: Accepted to ApJ. Full resolution version available at http://kicp.uchicago.edu/~kerens/HSTclusterSNe
    corecore