22 research outputs found

    Towards the systematic crystallisation of molecular ionic cocrystals: insights from computed crystal form landscapes

    Get PDF
    The underlying molecular and crystal properties affecting the crystallisation of organic molecular ionic cocrystals (ICCs) are investigated.</p

    Report on the sixth blind test of organic crystal-structure prediction methods

    No full text
    The sixth blind test of organic crystal-structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal, and a bulky flexible molecule. This blind test has seen substantial growth in the number of submissions, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and "best practices" for performing CSP calculations. All of the targets, apart from a single potentially disordered Z` = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms

    Towards crystal structure prediction of complex organic compounds - a report on the fifth blind test

    Get PDF
    Following on from the success of the previous crystal structure prediction blind tests (CSP1999, CSP2001, CSP2004 and CSP2007), a fifth such collaborative project (CSP2010) was organized at the Cambridge Crystallographic Data Centre. A range of methodologies was used by the participating groups in order to evaluate the ability of the current computational methods to predict the crystal structures of the six organic molecules chosen as targets for this blind test. The first four targets, two rigid molecules, one semi-flexible molecule and a 1: 1 salt, matched the criteria for the targets from CSP2007, while the last two targets belonged to two new challenging categories - a larger, much more flexible molecule and a hydrate with more than one polymorph. Each group submitted three predictions for each target it attempted. There was at least one successful prediction for each target, and two groups were able to successfully predict the structure of the large flexible molecule as their first place submission. The results show that while not as many groups successfully predicted the structures of the three smallest molecules as in CSP2007, there is now evidence that methodologies such as dispersion-corrected density functional theory (DFT-D) are able to reliably do so. The results also highlight the many challenges posed by more complex systems and show that there are still issues to be overcome

    Porous organic polymer composites as surging catalysts for visible-light-driven chemical transformations and pollutant degradation

    No full text
    The promising aspect of photocatalysis to effectively utilize the abundant solar irradiation for promoting various chemical reactions and environmental remediation at greener, low-energy demanding conditions resulted in the recent surge in this research field. In this review, the synthesis and structure-property relationships of photoactive porous organic polymers (POPS) followed by their environmentally benign applications including various chemical transformations and decontamination of pollutants involving key intermediate reactive species have been critically discussed. The conditions required to generate these active species such as photo-generated electron and hole pair, singlet oxygen, superoxide, organic radical, etc. and their different quenching pathways are initially explained to clearly portray the favourable settings necessary for efficient POP-photocatalysis. This introductory discussion is further extrapolated to systematically illustrate the structure-application correlation of every visible-light-responsive POPs reported to date. The mechanisms adapted by POPs for photocatalytic organic reactions and degradation of wastewater pollutants have been comprehensively depicted. Initial discussion on reactive species is envisioned to provide a clear grasp on these later-explained mechanistic pathways. The review is finally concluded by crucially explaining the existing limitations and future development prospects of this field. (C) 2019 Published by Elsevier B.V

    Mechanoelectronics: Flexible Organic Semiconducting Single Crystals for Durable All-Flexible Field-Effect Transistors

    No full text
    Although many examples of mechanically flexible crystals are currently known, their utility in all-flexible devices is not yet demonstrated, despite their immense potential for fabricating high-performance flexible devices. We report two alkylated diketopyrrolopyrrole (DPP) semiconducting single crystals, one of which displays impressive elastic mechanical flexibility whilst the other is brittle. Using the single crystal structures and density functional theory (DFT) calculations, we show that the methylated diketopyrrolopyrrole (DPP-diMe) crystals, with dominant π-stacking interactions and large contributions from dispersive interactions, are superior in terms of their stress tolerance and field-effect mobility (µFET) when compared to the brittle crystals of ethylated diketopyrrolopyrrole derivative (DPP-diEt). The field effect transistors (FETs) made of flexible substrates using elastic microcrystals of DPPdiMe retained µFET (from 0.019 cm2/Vs to 0.014 cm2/Vs ) more efficiently even after 40 bending cycles when compared to the brittle microcrystals of DPP-diEt which showed a significant drop in µFET just after 10 bending cycles. Our results not only provide valuable insights into bending mechanism but also demonstrate the untapped potential of mechanically flexible semiconducting crystals for designing all flexible durable devices

    Investigating the solid-state assembly of pharmaceutically-relevant N,N-dimethyl-O-thiocarbamates in the absence of labile hydrogen bonds

    No full text
    There are many active pharmaceutical ingredients that lack N-H, O-H and S-H hydrogen-bond donor functional groups. N,N-disubstituted O-thiocarbamates are examples of molecules that display such a feature. Despite the desirable medicinal properties displayed by some N,N-disubstituted O-thiocarbamates, the study of the solid-state properties of these compounds has been relatively unexplored. Herein, we report the synthesis and analysis of the structures and properties of a series of N,N-dimethyl-O-thiocarbamates, and use X-ray diffraction techniques to gain insight into how these molecules self-assemble in the solid-state. As part of our work, we report for the first time the crystal structure of Tolnaftate, an active pharmaceutical ingredient that is indicated for the treatment of fungal infections. It was observed that the aryl-thiocarbamate C-O bonds are twisted such that the planar aryl and carbamate moieties are orthogonal. Such a non-planar molecular geometry affects the way the molecules pack and crystal structure analyses revealed four general modes in which the molecules can assemble in the solid-state, with some members of the series displaying isostructural relationships. Computational modelling of the cohesive energy densities in the crystals suggests that there is no single stacking type that is associated with greater stability. However, crystals with a combination of high packing index and π···π stacking interactions appear to display large cohesive energy densities. The lack of strong hydrogen bonding interactions in the crystals also leads to relatively low Young’s moduli that are within a narrow range of 10-15 GPa for all 14 crystal structures reported.Agency for Science, Technology and Research (A*STAR)Accepted versionF.G. would like to thank A*STAR AME IRG (A1783c0003) and a NTU start-up grant (M4080552) for financial support.H.S.S. is grateful for the Singapore Ministry of Education Academic Research Fund Tier 1 grants RG 111/18 and RT 05/19. H.S.S. also acknowledges that this project is supported by A*STAR under the AME IRG grants A1783c0003, A1783c0002, and A1783c0007D.T. would like to thank A*STAR for a postdoctoral research fellowship..M. would like to acknowledge Khalifa University for financial support under the CIRA program (Project Code: CIRA-2018-068).The theoretical calculations were performed using the high-performance computing clusters of Khalifa University and the authors would like to acknowledge the support of the research computing department

    Direct and Telescopic Mechanochemical Synthesis of Higher-order Organic-Inorganic Hybrid Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design

    No full text
    The ability to rationally design and predictably construct crystalline solids has been the hallmark of crystal engineering research over the past two decades. When building higher-order multicomponent cocrystals (i.e. crystals containing more than two constituents), the differential and hierarchical way molecules interact and assemble in the solidstate is of pinnacle importance. To date, numerous examples of multicomponent crystals comprising organic molecules leading to salts, cocrystals or ionic cocrystals have been reported. However, the crystal engineering of hybrid organicinorganic cocrystals with sophisticated inorganic building blocks is still poorly understood and mostly unexplored. Here, we reveal the first efficient mechanochemical synthesis of higher-order hybrid organic-inorganic cocrystals based on the structurally versatile – yet largely unexplored – cyclodiphos(V/V)azane heterosynthon building block. The novel hybrid ternary and quaternary multicomponent cocrystals herein reported are held together by synergistic intermolecular interactions (e.g., hydrogen- and halogen-bonding, Se-π and ion-dipole interactions). Notably, higher-order ternary and quaternary cocrystals can be readily obtained either via direct synthetic routes from its individual components, or via unprecedented telescopic approaches from lower-order cocrystal sets. In addition, computational modelling has also revealed that the formation of higher-order cocrystals is thermodynamically driven, and that bulk moduli and compressibilities are strongly dependent on the chemical composition and intermolecular forces present in the crystals, which offer untapped potential for optimizing material properties

    Fluoranthene-based derivatives for multimodal anti-counterfeiting and detection of nitroaromatics

    Get PDF
    In this study, we developed two novel sky blue fluorescent fluorophores comprising ethyl alcohol (FOH) and ethanethiol (FSH) units appended to fluoranthene at the periphery. Single Crystal X-Ray Diffraction (SC-XRD) studies reveal that the molecular flexibility of alkyl chains leads to distinct diagonal (FOH) and ladder (FSH) shaped supramolecular arrangements in the crystal lattices. Detailed photophysical and DFT studies showed that FOH and FSH demonstrate high sensitivity and selectivity towards the detection of trinitrophenol (TNP). FSH exhibits high quenching efficiency (similar to 84%), a rate constant of KSV = 1.1 x 104 M-1 with a limit of detection of similar to 97 ppm in THF, and similar to 76 ppm in river water. Mechanistic investigation through NMR and SC-XRD of the FSH adduct with 1,3-dinitrobenzene (DNB) reveal strong pi-pi interactions (3.518 angstrom). Furthermore, photoinduced electron transfer occurs from the fluorophores to the nitro analytes and leads to strong intermolecular interactions using the static quenching mechanism. Both fluorophores were employed in advanced surveillance to identify finger marks on a wide range of substrates (glass, cellophane tape, aluminium foil and floor tiles) with different resolutions to provide an unadorned and lucrative method for viewing the latent fingerprints (LFPs) with exceptionally consistent evidence of up to level 3 and without the requirement for post-treatments, leading to promising applications for onsite forensic analysis. Furthermore, FOH and FSH were evaluated in 72 hpf zebrafish larvae/embryos to demonstrate the non-toxicological behaviour and fluorescence imaging/tracking. Two novel fluoranthene ensembles with ethyl alcohol (FOH) and ethanethiol (FSH) functionality with distinct diagonal and ladder arrangements in the crystal lattices were developed for Latent Fingerprints (LFPs) towards analysis of explosives.Web of Science4236270625
    corecore