11 research outputs found

    Role of Next-Generation RNA-Seq Data in Discovery and Characterization of Long Non-Coding RNA in Plants

    Get PDF
    The next-generation sequencing (NGS) technologies embrace advance sequencing technologies that can generate high-throughput RNA-seq data to delve into all the possible aspects of the transcriptome. It involves short-read sequencing approaches like 454, illumina, SOLiD and Ion Torrent, and more advance single-molecule long-read sequencing approaches including PacBio and nano-pore sequencing. Together with the help of computational approaches, these technologies are revealing the necessity of complex non-coding part of the genome, once dubbed as “junk DNA.” The ease in availability of high-throughput RNA-seq data has allowed the genome-wide identification of long non-coding RNA (lncRNA). The high-confidence lncRNAs can be filtered from the set of whole RNA-seq data using the computational pipeline. These can be categorized into intergenic, intronic, sense, antisense, and bidirectional lncRNAs with respect to their genomic localization. The transcription of lncRNAs in plants is carried out by plant-specific RNA polymerase IV and V in addition to RNA polymerase II and target the epigenetic regulation through RNA-directed DNA methylation (RdDM). lncRNAs regulate the gene expression through a variety of mechanism including target mimicry, histone modification, chromosome looping, etc. The differential expression pattern of lncRNA during developmental processes and different stress responses indicated their diverse role in plants

    Real-Time Tracking of Wildlife with IoT Solutions in Movement Ecology

    Get PDF
    Movement ecology has grown increasingly significant in the backdrop of global environmental changes, emphasizing the importance of understanding animal mobility patterns. The integration of Internet of Things (IoT) technology offers transformative potential for real-time wildlife tracking, addressing limitations of traditional methods like radio telemetry. Through IoT devices, researchers can acquire immediate, high-resolution datasets spanning vast distances, capturing multiple data points such as environmental conditions and physiological parameters. Existing implementations range from monitoring elephant movements in Africa to observing bird migrations. However, while promising, challenges like battery longevity, device weight, data management, and animal safety persist. As technological advances emerge, future prospects include more efficient, integrated solutions combining IoT with other technologies, poised to reshape and enrich our understanding of wildlife movement

    Very fred

    No full text
    This is important tool about the discovery & accelerating search in the quest of torniquet

    Ca2+/cation antiporters (CaCA): Identification, characterization and expression profiling in bread wheat (Triticum aestivum L.)

    Get PDF
    The Ca2+/cation antiporters (CaCA) superfamily proteins play vital function in Ca2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified thirty four TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B and D subgenome and homeologous chromosome (HC), except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs) due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about ten transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections) and abiotic stresses (heat, drought, salt) suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However the role of individual gene needs to be established. The present study unfolded the opportunity for detail functional characterization of TaCaCA proteins and their utilization in future crop improvement programs

    Survey of High Throughput RNA-Seq Data Reveals Potential Roles for lncRNAs during Development and Stress Response in Bread Wheat

    No full text
    Long non-coding RNAs (lncRNAs) are a family of regulatory RNAs that play essential role in the various developmental processes and stress responses. Recent advances in sequencing technology and computational methods enabled identification and characterization of lncRNAs in certain plant species, but they are less known in Triticum aestivum (bread wheat). Herein, we analyzed 52 RNA seq data (>30 billion reads) and identified 44,698 lncRNAs in T. aestivum genome, which were characterized in comparison to the coding sequences (mRNAs). Similar to the mRNAs, lncRNAs were also derived from each sub-genome and chromosome, and showed tissue developmental stage specific and differential expression, as well. The modulated expression of lncRNAs during abiotic stresses like heat, drought, and salt indicated their putative role in stress response. The co-expression of lncRNAs with vital mRNAs including various transcription factors and enzymes involved in Abscisic acid (ABA) biosynthesis, and gene ontology mapping inferred their regulatory roles in numerous biological processes. A few lncRNAs were predicted as precursor (19 lncRNAs), while some as target mimics (1,047 lncRNAs) of known miRNAs involved in various regulatory functions. The results suggested numerous functions of lncRNAs in T. aestivum, and unfolded the opportunities for functional characterization of individual lncRNA in future studies

    A novel investigation using thermal modeling and optimization of waste pyrolysis reactor using finite element analysis and response surface methodology

    No full text
    Abstract The influence of humans on the environment is growing drastically and is pervasive. If this trend continues for a longer time, it can cost humankind, social and economic challenges. Keeping this situation in mind, renewable energy has paved the way as our saviour. This shift will not only help in reducing pollution but will also provide immense opportunities for the youth to work. This work discusses about various waste management strategies and discusses the pyrolysis process in details. Simulations were done keeping pyrolysis as the base process and by varying parameters like feeds and reactor materials. Different feeds were chosen like Low-Density Polyethylene (LDPE), wheat straw, pinewood, and a mixture of Polystyrene (PS), Polyethylene (PE), and Polypropylene (PP). Different reactor materials were considered namely, stainless steel AISI 202, AISI 302, AISI 304, and AISI 405. AISI stands for American Iron and Steel Institute. AISI is used to signify some standard grades of alloy steel bars. Thermal stress and thermal strain values and temperature contours were obtained using simulation software called Fusion 360. These values were plotted against temperature using graphing software called Origin. It was observed that these values increased with increasing temperature. LDPE got the lowest values for stress and stainless steel AISI 304 came out to be the most feasible material for pyrolysis reactor having the ability to withstand high thermal stresses. RSM was effectively used to generate a robust prognostic model with high efficiency, R2 (0.9924–0.9931), and low RMSE (0.236 to 0.347). Optimization based on desirability identified the operating parameters as 354 °C temperature and LDPE feedstock. The best thermal stress and strain responses at these ideal parameters were 1719.67 MPa and 0.0095, respectively
    corecore