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Abstract

The next-generation sequencing (NGS) technologies embrace advance sequencing tech-
nologies that can generate high-throughput RNA-seq data to delve into all the possible 
aspects of the transcriptome. It involves short-read sequencing approaches like 454, illu-
mina, SOLiD and Ion Torrent, and more advance single-molecule long-read sequenc-
ing approaches including PacBio and nano-pore sequencing. Together with the help of 
computational approaches, these technologies are revealing the necessity of complex 
non-coding part of the genome, once dubbed as “junk DNA.” The ease in availability of 
high-throughput RNA-seq data has allowed the genome-wide identification of long non-
coding RNA (lncRNA). The high-confidence lncRNAs can be filtered from the set of whole 
RNA-seq data using the computational pipeline. These can be categorized into intergenic, 
intronic, sense, antisense, and bidirectional lncRNAs with respect to their genomic local-
ization. The transcription of lncRNAs in plants is carried out by plant-specific RNA poly-
merase IV and V in addition to RNA polymerase II and target the epigenetic regulation 
through RNA-directed DNA methylation (RdDM). lncRNAs regulate the gene expression 
through a variety of mechanism including target mimicry, histone modification, chromo-
some looping, etc. The differential expression pattern of lncRNA during developmental 
processes and different stress responses indicated their diverse role in plants.

Keywords: next-generation sequencing (NGS), high-throughput RNA-seq, long  
non-coding RNA (lncRNA), expression, development, stress

1. Introduction

Next-generation sequencing (NGS) technologies provide a new platform for the produc-

tion of high-throughput sequencing data in less time at reduced cost. The tremendous 
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 improvements in past years have allowed the sequencing of millions of DNA fragments in 

parallel. It has shifted the genomics to a newer edge by capturing the small details of DNA 

fragments. Earlier, Maxam and Gilbert's [1] and Sanger sequencing [2] techniques were lead-

ing approaches after the discovery of the DNA structure [3]. However, these techniques 

were time-consuming and limited to small-scale, dealing with few genes to the genome of 

simple organisms. But the necessity of sequencing the complex genome in short time and 

reduced cost have technologically advanced the sequencing approaches and evolved as NGS 

technologies. The NGS systems provide rapid, reproducible, and highly accurate sequenc-

ing techniques, and are based on the short-read sequencing approaches and a more advance 

single-molecule long-read sequencing [4]. The short-read sequencing approaches are depen-

dent on sequencing by synthesis (SBS) and sequencing by ligation (SBL) methods. Further, 

these methods require pre-processing of DNA before directly proceeding to the sequencing 

steps, according to the requirement of different NGS platforms [4]. In SBS approach, the 

nucleotides are added by the polymerase into the elongating DNA strand and the signal is 

received in the form of fluorescence or ionic concentration change for every single nucleotide 
incorporated [5, 6]. Besides this, in SBL approach, probes having one- or two-base match-

ing, bound to fluorophore, are ligated to the adjacent oligonucleotide on DNA fragments. 
The emitted fluorescent spectrum identifies the complementary bases of the probe at a spe-

cific position and reset primers are used to encrypt the complete DNA sequence [5]. Most 

of the short-read sequencing approaches require the clonal amplification of DNA on the 
solid surface such as bead-based, solid-state, and generation of DNA nanoball [5]. In all the 

methods, initially the DNA is fragmented and then ligated to a common set of adaptor for 

amplification and consequently ensue for DNA sequencing [5]. The short-read sequencing 

approaches include 454, illumina, SOLiD, and Ion Torrent platforms. Moreover, the in-silico 

approaches are used for the assembly of data generated by after these techniques [6]. The 

limitations in short-read sequencing approaches like de novo sequencing and the resolu-

tion of genomic variation leads to the development of more advance long-read sequenc-

ing approaches [6]. The long-read sequencing approaches are used for complex genomes 

with several long repetitive elements, structural variation, and alteration in copy number, 

which are significant for the occurrence of disease, and for evolution and adaptation [7–9]. 

It produces long reads of several kilobases and allows the higher resolution of the genome. 

In contrast to short reads, a single long-read can completely span the repetitive or complex 

region of genome, thus reducing the probability of vagueness in the size and positions of the 

genomic element [6]. Pacific Biosciences and Oxford Nanopore are commercially available 
sequencing technologies which provide the platform for sequencing the long reads with 

thousands of bases per read. These technologies are based on single-molecule sequencing, 

but have different methods of nucleotide detection. Oxford Nanopore is based on the detec-

tion through nanopores while Pacific Biosciences uses optical detection inside zero-mode 
waveguide [10]. Besides this, in synthetic approach, the data of short-read sequencing is 

combined with informatics and biochemical approaches for the construction of synthetic 

long reads. Long reads allow researchers for a deep transcriptomic study such as allele-

specific transcription, alternative splicing, and in the identification of exact connectivity of 
exons and discern gene isoforms [6, 11, 12].
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2. High-throughput RNA sequencing

Transcriptome consists of a whole set of transcripts present in a cell, and their expression level 

in particular developmental stage and cellular conditions. The detailed study of an organism at 

transcriptome level is necessary for revealing the molecular constituents involved in that par-

ticular stage or condition of the tissue. The high-throughput RNA-sequencing (RNA-seq) has 

emerged as an important technique in the field of transcriptomics for studying all the aspects of 
gene expression at large scale. It is one of the most commonly used techniques for quantifica-

tion and mapping of transcriptomes. It involves the conversion of RNA into cDNA, followed by 

random sequencing of cDNAs fragments by using NGS platforms [13]. The generated millions 

of short reads were assembled by various bioinformatics approaches. Consequent mapping of 

these short reads reveals the position of gene transcribing the RNA on the reference genome 

or sets of a gene [13]. The high-throughput technologies also include direct RNA sequencing 

(DRS), in which the native RNA is directly sequenced without proceeding to the step of cDNA 

preparation. The technique is successful in sequencing native polyA+, where reverse transcrip-

tion is undesirable. It is applicable in determining the precise sequence, identification of alterna-

tive polyadenylation sites, and deals with the small amount of nucleic acid [14]. In cap-assisted 

gene expression (CAGE) technique, RNAs with a 5′ cap are targeted. The short sequence tags are 
generated from 5′ ends of targeted RNAs with one tag per RNA molecule and allow the precise 
mapping of 5′ ends [15]. Series analysis of gene expression (SAGE) is another method for the 

sequencing of RNA molecules which target polyadenylated messages, and tags are generated 

near 3′ ends, typically one internal tag per RNA molecule [16]. Similarly, paired-end tags (PET) 

also targets polyadenylated RNA molecules, but the combined information on 5′ and 3′ ends 
of same RNA molecule generates the sequence tag [17]. Furthermore, rapid amplification of 
cDNA ends (RACE) is a PCR-based method used to identify the unknown sequences in conjunc-

tion with a known region. Together with the NGS technologies, it can be utilized for deep tran-

scriptome sequencing of the particular locus [18]. Targeted RNA sequencing is also meant for a 

specific locus and by using tiling microarrays RNAs are selected and sequenced [19]. RNA pro-

filing method by GRO-seq measures the steady-state levels of RNA and combined NGS analysis 
with the nuclear run-on experiments to generate information on RNA polymerase complexes 

competent with transcription [20]. This high-throughput RNA-seq is helpful in finding out the 
transcript (messenger RNAs, non-coding RNAs, and small RNAs) of species in short time and 

in determining the 5′ and 3′ splice sites, splicing patterns, and post-transcriptional modifications. 
The quantification of transcripts reveals the change in expression of genes in different conditions.

3. Long non-coding RNA (lncRNA)

3.1. Discovery and identification of lncRNA

In the era of NGS, the high-throughput RNA-seq data has lime lighted the necessity of 

non-coding part of the genome in the gene functioning. Non-coding RNAs (ncRNAs) are 
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transcribed from non-coding DNA, earlier called junk DNA. An extensive study on tran-

scriptomes from multiple species indicated that about 90% of the genome can be transcribed, 

whereas only a small portion of such transcribed regions potentially codes for proteins [21]. 

The ncRNAs are categorized into housekeeping and regulatory ncRNAs on the basis their 

expression and role in different cells types. The expression of housekeeping ncRNAs (e.g., 
t-RNA, r-RNA, and snRNA) is prominent and has a structural role in all the cells [22]. While, 

the regulatory ncRNA shows temporal expression in specific cell types and includes microR 

NAs (miRNAs), small interfering RNAs (siRNAs), enhancer RNAs (eRNAs), promoter-associated  

RNAs (PARs), Piwi-interacting RNAs (piRNAs), and long non-coding (lncRNA). The  

criteria of >200 nt length are set for the identification of lncRNAs among all the organisms  
[23]. lncRNA comprises of a major group of ncRNAs and regulate various biological processes  

through different molecular mechanisms.

Figure 1. Pipeline for identification of long non-coding RNA.
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In plants, the lncRNA was first reported in Glycine max [24], involved in changing the sub-cellular 

localization of a protein. In Medicago truncatula and Oryza sativa, MtENOD40 and OsENOD40  

lncRNAs were discovered in nodule formation, respectively, and signify the involvement 

of lncRNA in biological roles [25, 26]. Likewise, in other plant species, for example, COLD-

INDUCED LONG-ANTISENSE INTRAGENIC RNA (COOLAIR) and COLD-ASSISTED 

INTRONIC NONCODING RNA (COLDAIR), lncRNA in Arabidopsis thaliana [27, 28], involved 

in regulation of flowering, were identified and studied for their diverse function in the plant 
system. Furthermore, the exponential rise in high-throughput RNA-seq data have contributed 

to the discovery of lncRNA at genome-wide level, but the studies are limited in plants to some 

species. The amalgamation of experimental RNomics with the computational approaches has 

contributed to the identification of lncRNA and their function in  wide-ranging biological 
 processes [6]. The accurate identification and functional annotation is an ongoing challenge in 

Sr. no. Plant name Number of 
lncRNAs

Tissues/organ/stress Reference

1 Amborella trichopoda 2569 Tissue [32]

2 Arabidopsis thaliana ~6480 Organ-specific and stress responsive [22]

3 Chlamydomonas reinhardtii 2214 Cultured cells and synchronized vegetative 

cells

[32]

4 Cicer arietinum 2248 Three vegetative tissues and flower 
development

[30]

5 Cucumis sativus 3274 Fruit development and sex differentiation 
tissues

[33]

6 Fragaria vesca 1556 Floral, fruit tissue, and two vegetative tissues [34]

7 Medicago truncatula 23,324 Control, osmatic, and salt stress in leaf and 

root tissues

[35]

8 Oryza sativa 2224 Development and reproductive organs [36]

9 Physcomitrella patens 2711 Developmental stages [32]

10 Populus trichocarpa 2542 Control and drought condition [37]

11 Setaria italica 584 Drought stress [38]

12 Selaginella moellendorffii 4422 Root, stem, and leaf [32]

13 Solanum lycopersicum 10,774 In wild and ripening mutant [39]

1565 Tomato yellow-leaf curl virus stress [40]

14 Triticum aestivum 44,698 Organ-specific and stress responsive [31]

283 Fungal-responsive lincRNAs [41]

15 Vitis vinifera 4506 Organ-specific [32]

16 Zea mays 1704 Different tissues [42]

664 Drought-stressed leaves [43]

7245 Leaves (under conditions of nitrogen 

deficiency and sufficiency)
[44]

Table 1. Occurrence of lncRNA in various plant species.
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the field of bioinformatics for high-throughput RNA-seq data. The data of identified lncRNAs 
in plants is timely submitted to the different databases [29]. A pipeline with multiple filters 
has been designed for the assembly and identification of high confidence lncRNAs in Figure 1 

[30, 31]. The present status of most of the identified lncRNAs in different plant species are 
mentioned in Table 1.

3.2. Classification of lncRNAs

The biotypes of lncRNAs were identified with respect to their genomic localization, and were 
mainly categorized into intergenic, intronic, sense, antisense, and bidirectional lncRNAs. As 

the term suggest, the intergenic lncRNA are transcribed from the region amid two genes, 

while introns are the source of intronic lncRNA [45]. The sense and antisense lncRNAs are 

derived from overlapping region of exons on the sense and antisense strands, respectively 

[18], when the transcription of lncRNA is initiated in the juxtaposition of adjacent mRNA on 

complementary strand, termed as bidirectional lncRNA [45].

4. Molecular mechanisms of the functioning of lncRNAs

The dramatic change, in the past years about the knowledge of lncRNA in gene regulation 

mechanisms, has exponentially raised with high-throughput RNA-seq data. In plants, the 

studies are limited to small scale in comparison to animals, but the available reports sug-

gested their different mechanisms as following.

4.1. lncRNA as target mimics of miRNA

Target mimicry is a mechanism of lncRNA for regulating the functions of miRNAs. They 

inhibit the interaction between the miRNA and their respective targets by binding to the 

target of miRNA via partial complementary sequence [46]. The novel mechanism of target 

mimicry was first discovered in Arabidopsis. In addition, phosphate Starvation 1 (IPS1) was the 

first lncRNA identified as endogenous target mimic (eTM) of miR399 involved in phosphate 
homeostasis [46]. During phosphate starvation, the expression of miR399 is induced in com-

panion cells and phloem [47]. Subsequently, the expression of PHO2 gene, a target of miR399, 

is repressed [47–50]. This gene encodes UBC24 (E2 ubiquitin conjugase-related enzyme) and 

the reduction in its expression leads to the increased expression of Pht1;8 and Pht1;9 (phos-

phate transporter genes) in roots [47, 48]. Later, a similar mechanism was discovered in ani-

mals and humans suggesting target mimicry as the prevalent phenomenon [51, 52].

4.2. Histone modification

The lncRNAs are known to regulate gene expression through epigenetic changes. These epi-

genetic changes may result in alteration of gene expression in plants. Vernalization is the most 

common phenomenon of lncRNA mediated epigenetic regulation in plants. In Arabidopsis, 

FLOWERING LOCUS C (FLC) gene is the principal regulator of vernalization process and 

regulates the flowering time [53]. The expression of this gene is regulated by COOLAIR and 

COLDAIR lncRNAs through histone modifications [54].
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4.3. Precursor lncRNA

lncRNAs constitute an important class of riboregulators by acting as a precursor in the syn-

thesis of shorter ncRNAs, such as miRNAs and siRNAs. In this mechanism, some lncRNAs 

are processed to shorter ncRNAs or may directly act as a precursor [55]. The genes of primary 

miRNA transcripts (pri-miRNA) encoding miRNAs are transcribed by RNA polymerase II 

[56]. In plants, miRNA constitutes the modest portion in small regulatory ncRNA pool due to 

the presence of other complex small regulatory ncRNAs. In addition, they have plant-specific 
RNA polymerase IV/V involved in the transcription of siRNAs and endogenous siRNAs [57]. 

For example, in Triticum aestivum, 19 lncRNAs were predicted as a precursor of 28 miRNAs 

[31]. In Arabidopsis, the 24-nt sequence of several siRNAs were matched with five lncRNAs 
(npc34, npc351, npc375, npc520, and npc523), which was considered as potential precursor 

lncRNAs. The mapping of siRNAs on both the strands of lncRNAs also strengthened the 

findings [58].

4.4. RNA-dependent DNA methylation

The modification of chromatin is facilitated by recruitment of chromatin modifiers through 
lncRNA and small RNA (sRNA) into the specific locations in DNA. This RNA-dependent DNA 
methylation (RdDM) is a conserved process that recruits DNA methyltransferase and histone 

modifiers for DNA methylation and suppressive histone modification, respectively [59].

4.5. Chromosome looping

This mechanism is different from RdDM and histone modification, as it only involves the 
structural changes of chromatin. Thereby, it affects the binding potential of RNA polymerase 
and other transcription factors [60]. A persuasive example of chromosome looping mecha-

nism in plants by APOLO lncRNA has been described in auxin transport by regulating the 

PID expression, an auxin transporter. When locus of APOLO lncRNA is transcribed by RNA 

Pol V and modified by RdDM, the expression of the locus is suppressed and loops to PID. This 
causes the inhibition of PID transcription. In contrast, when RNA Pol II carry out the transcrip-

tion of APOLO lncRNA the looping of PID is restrained resulting in the expression of PID [60].

4.6. Protein re-localization

The mechanism of lncRNA in protein relocalization was first described in G. max and Medicago 

sativa [61, 62]. The symbiotic interactions among soil bacteria and leguminous plants are regu-

lated by Enod40 gene (early nodulin gene) which is induced by nitrogen-fixing bacteria in the 
pericycle and dividing cortical cells of roots [24, 63]. The diverse occurrence of Enod40 lncRNA 

was suggested by its presence in non-leguminous plants, such as rice [26, 64]. The secondary 

structure of Enod40 lncRNA is highly stable and has five highly conserved domains. The ORF 
of Enod40 is very short and synthesis two short peptides. These short peptides regulate the 

biological activities of Enod40 and consequently help in nodulation [65, 66]. In M. truncatula, 

Enod40 has been reported in the re-localization of MtRBP1 (Medicago truncatula RNA binding 

protein 1). Enod40 showed direct interaction with MtRBP1 and re-localized the protein during 

nodulation process from nuclear speckles into cytoplasmic granules [25].
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5. Expression profiling of lncRNAs

5.1. During developmental stages of different tissues

The expression of lncRNAs is regulated through different environmental and biological fac-

tors and delving into their diverse biological roles. They exhibit spatial and temporal expres-

sion during different developmental stages of various plant tissues. In contrast to the animals, 
a little is known about the functioning of lncRNAs in plants. The available reports reveal 
their role in nodule formation [26], lateral root development [67], vegetative and gameto-

phytic development [68], cell-wall synthesis [69], flowering time [27, 54], and several oth-

ers. The expression profiles developed using high-throughput RNA-seq data from various 
plants organs marks lncRNAs as an indispensable unit of the transcriptome. For instance, the 

expression profiles of lncRNAs from root, leaf, stem, spike, and grain in three developmental 
stages of T. aestivum have suggested the role in developmental processes. Furthermore, the 

lncRNAs show differential expression pattern comparable to the mRNA and highlight their 
function in related stages [31]. Besides this, the differential expression of lncRNAs in 11 dif-
ferent tissues of chickpea and 13 of maize also strengthens the findings [30]. These results also 

highlight the higher number of lncRNAs in actively dividing cells and reproductive tissues 

in comparison to the other [30, 33, 42, 43]. Depending on the expression values, they can be  

divided into different categories ranging from very low to very high expressing lncRNAs [30, 31].  

Furthermore, fragments per kilobase of transcripts per million mapped reads (FPKM), reads 

per kilobase of transcripts per million mapped reads (RPKM) or transcripts per million  

(TPM) has to be determined for normalization and estimation of expression level [70].  

The alteration in the expression level of various tissues within sundry plants can be corre-

lated with the different genetic makeup and depth of transcriptome sequencing data. Tissue 
specificity index (TSI) is also calculated for studying the differential expression pattern of 
lncRNAs. The value of TSI ranges from zero to one, zero for housekeeping genes and one or 

near to one for sternly tissue-specific genes [31]. The criteria of TSI has revealed that lncRNAs 

are involved in flower and fruit development in Fragaria vesca [34], flower development in 
Cicer arietinum [30], development of fiber in Gossypium arboreum [71], and in development of 

root and floral tissues in Morus notabilis [72]. In addition to TSI, cell-type specificity can be 
interpreted for the expression of lncRNAs in specific cells [29]. For instance, in Arabidopsis 

cell-type specific lncRNAs have been identified in specialized cells but the expression was 
lower in comparison to mRNA [73]. The knowledge of lncRNAs is limited in plants, but the 

elevation in the survey of high-throughput RNA-seq data has allowed the prediction of their 

biological roles through expression profiling.

5.2. Expression under biotic and abiotic stresses

The expression of lncRNAs gets affected by biotic and/or abiotic factors in plants, but the mech-

anism remains poorly understood. Stress-responsive lncRNAs have emerged as an important 

component of plant defense machinery. The differential expression patterns in response to vari-
ous stresses, including biotic and abiotic stresses, suggest the diverse function of lncRNAs at 

different intervals of stress exposure. For instance, the expression of 1832 lincRNAs gets remark-

ably affected after 2 h and/or 10 h of drought, salt, cold, and/or ABA (abscisic acid)  treatments 
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in Arabidopsis. However, the expression of one of the candidate stress responsive lincRNA 

increased after treatment by elf18 (EF-Tu), which activates pathogen-associated molecular pat 

tern responses [22]. Likewise, in T. aestivum, 283 lncRNAs were identified as fungal-responsive  
lncRNAs, out of which 254 and 52 lincRNAs were specifically expressed after infestation with  
Blumeria graminis f. sp. tritici and Puccinia striiformis f. sp. tritici, respectively [41]. Later, a 

total of 44,698 lncRNAs were identified in T. aestivum consisting of both stress responsive and  

tissue-specific lncRNAs [31]. In response to tomato yellow-leaf curl virus, 1565 lncRNAs were 

expressed in Solanum lycopersicum [40]. In case of Populus trichocarpa, 2542 lncRNAs were 

expressed under drought stress condition [37]. The exploration of lncRNAs in various plant 

species in response to different stress conditions exhibit the dynamic role in plant defense.

6. Databases for lncRNAs

New high-throughput technologies have aided in the exponential rise of RNA-seq data from 

various plant species. A significant amount of lncRNAs has been identified and characterized for 
their diverse biological roles. Therefore, it is necessary to organize this data in web-based plat-

forms or databases for further improvement, updates, and analysis [29]. Along with the aid of 

several computational tools, the data can be analyzed for phylogenetic relationships, expression 

patterns, molecular interactions, single nucleotide polymorphism, epigenetic variations, etc., 
and assist in understanding the lncRNAs in plants. The information in these databases can be 

managed specifically for single or numerous plant species. For instance, PLncRNAdb is specific 
for four plants species including A. thaliana, A. lyrata, P. trichocarpa, and Z. mays and consist of 

5000 lncRNAs [74]. The information on 37 plants and 6 algae with data of >120,000 lncRNAs can 

be accessed on GreeNC database [75]. NONCODE v4 and PLncDB have information on 3853 

and >13,000 lncRNA transcripts, respectively in Arabidopsis. Some databases cover the infor 

mation on both coding and non-coding transcripts like PlantNATsDB accumulating data of 70 

plant species on NATs [76]. Besides this, some databases are plant-specific like TAIR10, PNRD, 
PlantNATsDB, etc., while certain databases (e.g., RNACentral, lncRNAdb v2.0, and NONCODE 

v4) consist of information from other organisms also in addition to plants [29]. These well-managed  

databases will allow the researchers to further study the lncRNA in more depth.

7. Biological roles of lncRNAs

The present knowledge on the function of lncRNAs is still limited in plants and a large por-

tion of their function and mechanism is yet to be identified. In spite of this, the biological role 
of lncRNA has been studied in several plant species as discussed in Table 2. Some biological 

roles have been discussed here to highlight the importance of lncRNAs in plants.

7.1. lncRNA in plant fertility

The participation of lncRNAs in producing the male sterile lines in O. sativa is an important 

example of plant fertility. These male sterile lines are necessary for the hybridization and 
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breeding processes. lncRNAs are known to induce photoperiod-sensitive genetic male steril-

ity (PSMF) in O. sativa [82, 86], but the mechanism is not completely well understood. But 

according to the available reports, two different mechanisms of lncRNA can be possible [23]. 

In one mechanism, the high expression of the long day (LD)-specific male-fertility-associated RNA 

(LDMAR), a type of lncRNA, is important for the fertility of rice plant during long day (LD) 

conditions. During male sterility, the programme cell death (PCD) of anther cells occur due 

to lowered expression of LDMAR under LD conditions. The reduced expression of LDMAR 

is mediated by over expressing psi-LDMAR (a siRNA), transcribed in the promoter region 

of LDMAR. Enhanced expression of Psi-LDMAR caused methylation in promoter region 

through RdDM mechanism [81]. The other mechanism suggested the involvement of osa-sm 

R5864w (a 21-nt sRNA) which was formed from a unique ncRNA encoded by LDMAR. The 

Sr. 

no.

Species name Annotated 

lncRNAs

Biological role Regulatory 

mechanism

References

1 Arabidopsis thaliana APOLO Auxin-controlled development Chromatin loop 

dynamics

[77]

ASCO-lncRNA Lateral root development Alternative splicing 

regulators

[67]

asHSFB2a Vegetative and gametophytic 

development

Antisense 

transcription

[68]

COLDAIR Flowering time Promoter 

interference

[27]

COOLAIR Flowering time Histone 

modification
[28, 54, 78]

HID1 Photomorphogenesis Chromatin 

association

[79]

IPS1 Phosphate homeostasis Target mimicry [46]

2. Glycine max GmENOD40 Nodule formation Protein 

re-localization

[61]

3. Hordeum vulgare HvCesA6 lnc-NAT Cell-wall synthesis siRNA precursor [69]

4. Medicago truncatula MtENOD40 Nodule formation Protein 

re-localization

[66]

5. Oryza sativa Cis-NATPHO1;2 Phosphate homeostasis Translational 

enhancer

[80]

LDMAR (P/

TMS12-1

Fertility Promoter 

interference

[81, 82]

OsPI1 Phosphate homeostasis Unknown [83]

OsENOD40 Nodule formation Unknown [26]

6. Petunia hybrid SHO lnc-NAT Local cytokinin synthesis dsRNA degradation [84]

7. Solanum 

lycopersicum

TPS11 Phosphate homeostasis Unknown [85]

Table 2. List of some annotated lncRNAs.

Next Generation Plant Breeding120



point mutation of C to G in osa-sm R5864w, resulting in the loss of function, leads to the pro-

duction of light and temperature sensitive male sterile lines of rice [82].

7.2. Role in alternate splicing

Plant lncRNAs are known to increase the complexity of transcriptome and proteome by par-

ticipating in alternative splicing. It was first reported in Arabidopsis, where lncRNA behaved 
as an alternative splicing competitor (ASCO) [67]. Together with the nuclear speckle RNA-

binding protein (NSR), ASCO-lncRNA forms an alternative splicing regulatory module. The 

expression of AtNSR in primary and lateral root meristems regulates the development of 

lateral roots. The interaction of AtNSR with overexpressing ASCO-lncRNA affects the splic-

ing pattern of mRNA targeted by NSR in transgenic plant [67, 87]. This indicates the role of 

lncRNA as a regulator of alternative splicing.

7.3. Plant lncRNAs in photomorphogenesis

Most of the plant growth and developmental processes are regulated by different climatic 
factors among them light is one of the most important factor [88]. The role of lncRNA in 

the regulation of photomorphogenesis is still an interesting area of research because most 

of the identified regulatory molecules are proteins. In A. thaliana, several light responsive 

lncRNAs have been identified associated with histone modifications [89]. Identification and 
functional characterization of HIDDEN TREASURE 1 (HID1), a novel lncRNA, involved in 

photomorphogenesis have been accomplished [89]. It may control the process of photomor 

phogenesis by regulating the expression of PHYTOCHROME INTERACTING FACTOR  

3 (PIF3), a transcription factor involved in light response [89]. It could negatively regulate the  

expression of PIF3 gene by binding to its promoter directly or in association with chromatin 

[89]. The occurrence of HID1 homologs has been described in other plant species exhibiting 

conserved functions. The findings also shed light on the involvement of other ncRNAs in 
light responses.

8. Limitations in computational analysis of lncRNAs

The selection of lncRNAs from the complete set of RNAs is broadly based on three criteria:  

(i) transcript length of ≥200 bp, (ii) small open reading frame with ≤300 bp, and (iii) transcripts  
without homology to known proteins. In addition to this, several other factors like the type of 

cDNA libraries or transcriptional sequence data, depth of sequencing, and coding potential 

of transcripts, also contribute in the screening of lncRNAs. The challenges during computa-

tional analysis come when some protein-coding gene which fulfill the basic selection criteria 
and encode a functional peptide. Besides this, the functional long non-coding transcript may 

have ORF >300 bp and share homology with known protein-coding genes will also produce 

hindrance in the identification [90]. Another challenge comes with the transcripts that not 

only function as an RNA molecule, but also encodes a peptide [91]. The advancement in com-

putational approaches have been made to overcome these limitations and for more accurate 
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differentiation between coding and non-coding transcripts [92]. The use of support vector 

machines (SVMs) or other machine learning algorithms along with the computational meth-

ods have increased the confidence of disparity in between coding and non-coding transcripts 
[93]. However, the identity and function of computationally identified lncRNA needs to be 
validated individually by experimentation.
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