15 research outputs found

    Developing Further Versatility in Benzoxazine Synthesis via Hydrolytic Ring-Opening

    Get PDF
    In this study, 2-(aminomethyl)phenol and its derivatives, the reactants for 2-substituted 1,3-benzoxazines, are synthesized by HCl hydrolysis from the typical benzoxazines. The phenol/ aniline-based mono-oxazine benzoxazine, PH-a, and the bisphenol A/aniline-based bis-oxazine benzoxazine, BA-a, are used as examples to demonstrate the feasibility of this new approach. Their chemical structures are characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) and Raman spectroscopies, and are further verified by elementary analysis. Their thermal properties are studied by differential scanning calorimetry (DSC). These two 2-(aminomethyl) phenolic derivatives are reacted with paraformaldehyde to close the oxazine rings. A benzoxazine with a phenyl substituent at the 2-position of the oxazine ring is obtained from the 2-(phenylamino)methyl)phenol (hPH-a) and benzaldehyde. All these results highlight the success of the HCl hydrolysis and the formation of stable intermediates, namely 2-(aminomethyl) phenolic derivatives, from readily available benzoxazine monomers. This further demonstrates the feasibility of using these intermediates as reactants for a novel benzoxazine synthesis.Fil: Cui, Shaoying. Sichuan University; ChinaFil: Arza, Carlos R.. Case Western Reserve University; Estados UnidosFil: Froimowicz, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Tecnología en Polímeros y Nanotecnología. Universidad de Buenos Aires. Facultad de Ingeniería. Instituto de Tecnología en Polímeros y Nanotecnología; Argentina. Case Western Reserve University; Estados UnidosFil: Ishida, Hatsuo. Case Western Reserve University; Estados Unido

    Nanoparticle Orientation to Control RNA Loading and Ligand Display on Extracellular Vesicles for Cancer Regression

    Get PDF
    Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for specific targeting and extracellular vesicles for efficient membrane fusion, the resulting ligand-displaying extracellular vesicles were capable of specific delivery of siRNA to cells, and efficiently blocked tumour growth in three cancer models. Extracellular vesicles displaying an aptamer that binds to prostate-specific membrane antigen, and loaded with survivin siRNA, inhibited prostate cancer xenograft. The same extracellular vesicle instead displaying epidermal growth-factor receptor aptamer inhibited orthotopic breast cancer models. Likewise, survivin siRNA-loaded and folate-displaying extracellular vesicles inhibited patient-derived colorectal cancer xenograft

    Dicyandiamide has more inhibitory activities on nitrification than thiosulfate.

    No full text
    Dicyandiamide (DCD) and thiosulfates are two type of nitrification inhibitors (NIs) that have been widely used in agriculture to improve nitrogen (N) fertilizer use efficiency and mitigate negative effect of N on environment. Little information is available concerning the comparison of the efficacy of DCD and thiosulfate on N transformations in soil. The aim of this study was to compare the effects of DCD and thiosulfate (K2S2O3) on changes of NH4+-N, nitrification inhibition and N recovery in a latosolic red soil. An incubation experiment was conducted with four treatments of control (CK), N, N+DCD, and N+K2S2O3. Soil samples were collected periodically over 50 d to determine concentrations of mineral N, and the amoA gene abundance of ammonia monooxygenase (AMO) for ammonia-oxidizing bacteria (AOB) was estimated by qPCR after 10 d incubation. In the N treatment, 67.8% of the applied N as NH4+-N disappeared from the mineral N pool and only 2.7% and 30.8% of the applied N was accumulated as NO2--N and NO3--N, respectively. Addition of DCD and thiosulfate to the soil prevented NH4+-N disappearance by 63.0% and 13.6%, respectively. DCD suppressed the production of NO2--N by 97.41%, whereas thiosulfate increased accumulation of NO2--N by 14.6%. Application of N along with DCD and thiosulfate inhibited nitrification, respectively, by 72.6% and 33.1%, resulting in the delay of the nitrification process for 30 days and 10 days, respectively. Apparent N recovery in N treatment was 66.2%, which increased by 55.2% and 4.8% by DCD and thiosulfate, respectively. Numbers of AOB amoA gene copy was significantly inhibited by both DCD and thiosulfate, and the stronger inhibition induced by DCD than thiosulfate was recorded. Results indicated that both DCD and thiosulfate were effective inhibitors for NH4+-N oxidation, NO3--N production, mineral N losses and AOB growth. DCD showed a more pronounced effect on nitrification inhibition than thiosulfate

    Edible Composite Coating of Chitosan and Curdlan Maintains Fruit Quality of Postharvest Cherry Tomatoes

    No full text
    Postharvest cherry tomatoes are prone to senescence, decay and nutrient loss during the storage period owing to microbial invasion and their own metabolism. In this work, postharvest cherry tomatoes were treated with a composite coating of 1% chitosan and 1% curdlan, and the characteristics of postharvest cherry tomatoes during storage were investigated. Compared to control samples, after 21 d of storage under ambient conditions, the cherry tomatoes treated with the chitosan and curdlan coatings showed less rottenness, less weight loss, a lower respiration rate, reduced ethylene production, lower malonaldehyde (MDA) content and reduced membrane permeability. After the samples were treated with the composite coating, the activities of free radical scavenging enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were maintained at higher levels; the activities of related disease-resistant enzymes such as chitinase (CHI) and glucanase (GLU) were also maintained at higher levels. The soluble solids, titratable acidity, firmness, vitamin C content, lycopene content and antioxidant activities of postharvest cherry tomatoes treated with the composite coating exhibited higher levels as well. The composite coating of chitosan and curdlan might be a potentially promising method for preserving postharvest cherry tomatoes and other fruits

    Multiplex Microfluidic Paper-based Immunoassay for the Diagnosis of Hepatitis C Virus Infection

    No full text
    Hepatitis C virus (HCV) infection is a serious and rising global healthcare problem. One critical challenge to tackle this disease is the lack of adequate diagnosis. Here, we develop a multiplex microfluidic paper-based immunoassay, as a novel diagnostic approach, to detect human IgG antibody against HCV (anti-HCV). The paper substrate, highly flammable nitrocellulose (NC), is patterned under ambient temperature by craft punch patterning (CPP) to generate multiple test zones. On the basis of superior merits of patterned paper, this new diagnostic approach demonstrates the key novelty to unprecedentedly combine segmented diagnostic assays into a single multiplex test. The generated diagnostic results are not only informative but can be rapidly and cost-effectively delivered. It would significantly transform the clinical pathway for unwitting individuals with HCV infection. This work highlights the promising role of microfluidic paper-based immunoassays in tackling the diagnostic challenge for the HCV pandemic as well as other diseases
    corecore