50 research outputs found
Recommended from our members
Targeted knockdown of ribulose-1, 5-bisphosphate carboxylase-oxygenase in rice mesophyll cells.
We generated antisense constructs targeting two of the five Rubisco small subunit genes (OsRBCS2 and 4) which account for between 30-40 % of the RBCS transcript abundance in leaf blades. The constructs were driven by a maize phosphoenolpyruvate carboxylase (PEPC) promoter known to have enriched expression in mesophyll cells (MCs). In the resulting lines leaf, Rubisco protein content was reduced by between 30-50 % and CO2 assimilation rate was limited under photorespiratory and non-photorespiratory conditions. A relationship between Rubisco protein content and CO2 assimilation rate was found. This was associated with a significant reduction in dry biomass accumulation and grain yield of between 37-70%. In addition to serving as a resource for reducing Rubisco accumulation in a cell-preferential manner, these lines allow us to characterize gene function and isoform specific suppression on photosynthesis and growth. Our results suggest that the knockdown of multiple genes is required to completely reduce Rubisco accumulation in MCs
A Partial C4 Photosynthetic Biochemical Pathway in Rice.
Introduction of a C4 photosynthetic pathway into C3 rice (Oryza sativa) requires installation of a biochemical pump that concentrates CO2 at the site of carboxylation in modified bundle sheath cells. To investigate the feasibility of this, we generated a quadruple line that simultaneously accumulates four of the core C4 photosynthetic enzymes from the NADP-malic enzyme subtype, phosphoenolpyruvate carboxylase (ZmPEPC), NADP-malate dehydrogenase (ZmNADP-MDH), NADP-malic enzyme (ZmNADP-ME), and pyruvate phosphate dikinase (ZmPPDK). This led to enhanced enzyme activity and mild phenotypic perturbations but was largely neutral in its effects on photosynthetic rate. Measurements of the flux of 13CO2 through photosynthetic metabolism revealed a significant increase in the incorporation of 13C into malate, consistent with increased fixation of 13CO2 via PEP carboxylase in lines expressing the maize PEPC enzyme. However, there was no significant differences in labeling of 3-phosphoglycerate (3PGA) indicating that there was no carbon flux through NADP-ME into the Calvin-Benson cycle. There was also no significant difference in labeling of phosphoenolpyruvate (PEP) indicating that there was no carbon flux through PPDK. Crossing the quadruple line with a line with reduced glycine decarboxylase H-protein (OsGDCH) abundance led to a photosynthetic phenotype characteristic of the reduced OsGDCH line and higher labeling of malate, aspartate and citrate than in the quintuple line. There was evidence of 13C labeling of aspartate indicating 13CO2 fixation into oxaloacetate by PEPC and conversion to aspartate by the endogenous aspartate aminotransferase activity. While Kranz anatomy or other anatomical modifications have not yet been installed in these plants to enable a fully functional C4 cycle, these results demonstrate for the first-time a partial flux through the carboxylation phase of NADP-ME C4 metabolism in transgenic rice containing two of the key metabolic steps in the C4 pathway
Knockdown of glycine decarboxylase complex alters photorespiratory carbon isotope fractionation in Oryza sativa leaves
The influence of reduced glycine decarboxylase complex (GDC) activity on leaf atmosphere CO2 and 13CO2 exchange was tested in transgenic Oryza sativa with the GDC H-subunit knocked down in leaf mesophyll cells. Leaf measurements on transgenic gdch knockdown and wild-type plants were carried out in the light under photorespiratory and low photorespiratory conditions (i.e. 18.4 kPa and 1.84 kPa atmospheric O2 partial pressure, respectively), and in the dark. Under approximately current ambient O2 partial pressure (18.4 kPa pO2), the gdch knockdown plants showed an expected photorespiratory-deficient phenotype, with lower leaf net CO2 assimilation rates (A) than the wild-type. Additionally, under these conditions, the gdch knockdown plants had greater leaf net discrimination against 13CO2 (Îo) than the wild-type. This difference in Îo was in part due to lower 13C photorespiratory fractionation (f) ascribed to alternative decarboxylation of photorespiratory intermediates. Furthermore, the leaf dark respiration rate (Rd) was enhanced and the 13CO2 composition of respired CO2 (ÎŽ13CRd) showed a tendency to be more depleted in the gdch knockdown plants. These changes in Rd and ÎŽ13CRd were due to the amount and carbon isotopic composition of substrates available for dark respiration. These results demonstrate that impairment of the photorespiratory pathway affects leaf 13CO2 exchange, particularly the 13C decarboxylation fractionation associated with photorespiration.Research was funded by a C4 Rice Project grant from The Bill and
Melinda Gates Foundation to IRRI (2012â2015) and to the University
of Oxford (2015â2019); by the National Science Foundation, grant
MCB-1146928; by the National Science Foundation, grant MRI0923562; and by the Russian Science Foundation, grant 16-16-00089
Transgenic maize phosphoenolpyruvate carboxylase alters leaf-atmosphere CO2 and 13CO2 exchanges in Oryza sativa.
The engineering process of C4 photosynthesis into C3 plants requires an increased activity of phosphoenolpyruvate carboxylase (PEPC) in the cytosol of leaf mesophyll cells. The literature varies on the physiological effect of transgenic maize (Zea mays) PEPC (ZmPEPC) leaf expression in Oryza sativa (rice). Therefore, to address this issue, leaf-atmosphere CO2 and 13CO2 exchanges were measured, both in the light (at atmospheric O2 partial pressure of 1.84Â kPa and at different CO2 levels) and in the dark, in transgenic rice expressing ZmPEPC and wild-type (WT) plants. The in vitro PEPC activity was 25 times higher in the PEPC overexpressing (PEPC-OE) plants (~20% of maize) compared to the negligible activity in WT. In the PEPC-OE plants, the estimated fraction of carboxylation by PEPC (ÎČ) was ~6% and leaf net biochemical discrimination against 13CO2[Formula: see text] was ~â2â° lower than in WT. However, there were no differences in leaf net CO2 assimilation rates (A) between genotypes, while the leaf dark respiration rates (Rd) over three hours after light-dark transition were enhanced (~â30%) and with a higher 13C composition [Formula: see text] in the PEPC-OE plants compared to WT. These data indicate that ZmPEPC in the PEPC-OE rice plants contributes to leaf carbon metabolism in both the light and in the dark. However, there are some factors, potentially posttranslational regulation and PEP availability, which reduce ZmPEPC activity in vivo
Re-creation of a Key Step in the Evolutionary Switch from C3 to C4 Leaf Anatomy
The C4 photosynthetic pathway accounts for âŒ25% of primary productivity on the planet despite being used by only 3% of species. Because C4 plants are higher yielding than C3 plants, efforts are underway to introduce the C4 pathway into the C3 crop rice. This is an ambitious endeavor; however, the C4 pathway evolved from C3 on multiple independent occasions over the last 30 million years, and steps along the trajectory are evident in extant species. One approach toward engineering C4 rice is to recapitulate this trajectory, one of the first steps of which was a change in leaf anatomy. The transition from C3 to so-called âproto-Kranzâ anatomy requires an increase in organelle volume in sheath cells surrounding leaf veins. Here we induced chloroplast and mitochondrial development in rice vascular sheath cells through constitutive expression of maize GOLDEN2-LIKE genes. Increased organelle volume was accompanied by the accumulation of photosynthetic enzymes and by increased intercellular connections. This suite of traits reflects that seen in âproto-Kranzâ species, and, as such, a key step toward engineering C4 rice has been achieved.Research was funded by a C4 Rice Project grant
from The Bill & Melinda Gates Foundation to IRRI (2012â2015; OPPGD1394)
and the University of Oxford (2015â2019; OPP1129902)
Candidate regulators of Early Leaf Development in Maize Perturb Hormone Signalling and Secondary Cell Wall Formation When Constitutively Expressed in Rice
All grass leaves are strap-shaped with a series of parallel veins running from base to tip, but the distance between each pair of veins, and the cell-types that develop between them, differs depending on whether the plant performs C or C photosynthesis. As part of a multinational effort to introduce C traits into rice to boost crop yield, candidate regulators of C leaf anatomy were previously identified through an analysis of maize leaf transcriptomes. Here we tested the potential of 60 of those candidate genes to alter leaf anatomy in rice. In each case, transgenic rice lines were generated in which the maize gene was constitutively expressed. Lines grouped into three phenotypic classes: (1) indistinguishable from wild-type; (2) aberrant shoot and/or root growth indicating possible perturbations to hormone homeostasis; and (3) altered secondary cell wall formation. One of the genes in class 3 defines a novel monocot-specific family. None of the genes were individually sufficient to induce C -like vein patterning or cell-type differentiation in rice. A better understanding of gene function in C plants is now needed to inform more sophisticated engineering attempts to alter leaf anatomy in C plants
Transgenic maize phosphoenolpyruvate carboxylase alters leaf-atmosphere CO2 and 13CO2 exchanges in Oryza sativa
The engineering process of C4 photosynthesis into C3 plants requires an increased activity of phosphoenolpyruvate carboxylase (PEPC) in the cytosol of leaf mesophyll cells. The literature varies on the physiological efect of transgenic maize
(Zea mays) PEPC (ZmPEPC) leaf expression in Oryza sativa (rice). Therefore, to address this issue, leaf-atmosphere CO2
and 13CO2 exchanges were measured, both in the light (at atmospheric O2 partial pressure of 1.84 kPa and at diferent CO2
levels) and in the dark, in transgenic rice expressing ZmPEPC and wild-type (WT) plants. The in vitro PEPC activity was
25 times higher in the PEPC overexpressing (PEPC-OE) plants (~20% of maize) compared to the negligible activity in WT.
In the PEPC-OE plants, the estimated fraction of carboxylation by PEPC (ÎČ) was ~6% and leaf net biochemical discrimination
against 13CO2 (Îbio) was ~2â° lower than in WT. However, there were no diferences in leaf net CO2 assimilation rates
(A) between genotypes, while the leaf dark respiration rates (Rd) over three hours after light-dark transition were enhanced
(~ 30%) and with a higher 13C composition (íż13CRd)
in the PEPC-OE plants compared to WT. These data indicate that
ZmPEPC in the PEPC-OE rice plants contributes to leaf carbon metabolism in both the light and in the dark. However,
there are some factors, potentially posttranslational regulation and PEP availability, which reduce ZmPEPC activity in vivo.This research was funded by the C4 Rice Project
grant from The Bill and Melinda Gates Foundation to IRRI (2012â
2015) and to the University of Oxford (2015â2019); by the National
Science Foundation, Grant MCB-1146928; by the National Science
Foundation, Grant MRI-0923562; and by the Russian Science Foundation, Grant 16-16-00089
Overexpression of the chloroplastic 2-oxoglutarate/malate transporter disturbs carbon and nitrogen homeostasis in rice
The chloroplastic 2-oxaloacetate (OAA)/malate transporter (OMT1 or DiT1) takes part in the malate valve that protects chloroplasts from excessive redox poise through export of malate and import of OAA. Together with the glutamate/malate transporter (DCT1 or DiT2), it connects carbon with nitrogen assimilation, by providing 2-oxoglutarate for the GS/GOGAT (glutamine synthetase/glutamate synthase) reaction and exporting glutamate to the cytoplasm. OMT1 further plays a prominent role in C4 photosynthesis: OAA resulting from phosphoenolpyruvate carboxylation is imported into the chloroplast, reduced to malate by plastidic NADP-malate dehydrogenase, and then exported for transport to bundle sheath cells. Both transport steps are catalyzed by OMT1, at the rate of net carbon assimilation. To engineer C4 photosynthesis into C3 crops, OMT1 must be expressed in high amounts on top of core C4 metabolic enzymes. We report here high-level expression of ZmOMT1 from maize in rice (Oryza sativa ssp. indica IR64). Increased activity of the transporter in transgenic rice was confirmed by reconstitution of transporter activity into proteoliposomes. Unexpectedly, overexpression of ZmOMT1 in rice negatively affected growth, CO2 assimilation rate, total free amino acid content, tricarboxylic acid cycle metabolites, as well as sucrose and starch contents. Accumulation of high amounts of aspartate and the impaired growth phenotype of OMT1 rice lines could be suppressed by simultaneous overexpression of ZmDiT2. Implications for engineering C4 rice are discussed