557 research outputs found

    Evolutionary History of Chemosensory-Related Gene Families across the Arthropoda

    Get PDF
    Chemosensory-related gene (CRG) families have been studied extensively in insects, but their evolutionary history across the Arthropoda had remained relatively unexplored. Here, we address current hypotheses and prior conclusions on CRG family evolution using a more comprehensive data set. In particular, odorant receptors were hypothesized to have proliferated during terrestrial colonization by insects (hexapods), but their association with other pancrustacean clades and with independent terrestrial colonizations in other arthropod subphyla have been unclear. We also examine hypotheses on which arthropod CRG family is most ancient. Thus, we reconstructed phylogenies of CRGs, including those from new arthropod genomes and transcriptomes, and mapped CRG gains and losses across arthropod lineages. Our analysis was strengthened by including crustaceans, especially copepods, which reside outside the hexapod/branchiopod clade within the subphylum Pancrustacea. We generated the first high-resolution genome sequence of the copepod Eurytemora affinis and annotated its CRGs. We found odorant receptors and odorant binding proteins present only in hexapods (insects) and absent from all other arthropod lineages, indicating that they are not universal adaptations to land. Gustatory receptors likely represent the oldest chemosensory receptors among CRGs, dating back to the Placozoa. We also clarified and confirmed the evolutionary history of antennal ionotropic receptors across the Arthropoda. All antennal ionotropic receptors in E. affinis were expressed more highly in males than in females, suggestive of an association with male mate-recognition behavior. This study is the most comprehensive comparative analysis to date of CRG family evolution across the largest and most speciose metazoan phylum Arthropoda

    Individually Modified Saliva Delivery Changes the Perceived Intensity of Saltiness and Sourness

    Get PDF
    Individuals vary largely in their salivary flow and composition, and given the importance of saliva on perception of taste, this might influence how the tastant stimuli are perceived. We therefore hypothesise that altering the individual salivary flow rates has an impact on the perceived taste intensity. In this study, we investigated the role of saliva amount on the perceived taste intensity by excluding parotid saliva and adding artificial saliva close to the parotid duct at preset flow rates. Significant decreases in perception with increasing salivary flow rates were observed for citric acid and sodium chloride. This can partially be explained by a dilution effect which is in line with previous studies on detectable concentration differences. However, since the bitterness and sweetness remained unaffected by the salivary flow conditions and the dilution effect was comparable to that of saltiness, further explanation is needed. Furthermore, we investigated whether the suppression of taste intensity in binary mixtures (taste–taste interactions) could possibly be caused by the increased salivary flow rate induced by an additional taste attribute. The results show, however, that suppression of taste intensity in binary mixtures was not affected by the rate of salivation. This was more likely to be explained by psychophysics

    Salivary flow rate, pH, and concentrations of calcium, phosphate, and sIgA in Brazilian pregnant and non-pregnant women

    Get PDF
    BACKGROUND: Studies on salivary variables and pregnancy in Latin America are scarce. This study aimed to compare salivary flow rate, pH, and concentrations of calcium, phosphate, and sIgA of unstimulated whole saliva in pregnant and non-pregnant Brazilians. METHODS: Cross-sectional study. Sample was composed by 22 pregnant and 22 non-pregnant women attending the Obstetrics and Gynecology Clinics, São Lucas Hospital, in Porto Alegre city, South region of Brazil. Unstimulated whole saliva was collected to determine salivary flow rate, pH, and biochemical composition. Data were analyzed by Student t test and ANCOVA (two-tailed α = 0.05). RESULTS: No difference was found for salivary flow rates and concentrations of total calcium and phosphate between pregnant and non-pregnant women (p > 0.05). Pregnant women had lower pH (6.7) than non-pregnant women (7.5) (p < 0.001), but higher sIgA level (118.9 mg/L) than the latter (90.1 mg/L) (p = 0.026). CONCLUSION: Some of the tested variables of unstimulated whole saliva were different between pregnant and non-pregnant Brazilians in this sample. Overall, the values of the tested salivary parameters were within the range of international references of normality

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Interactions of CO2 with various functional molecules

    Get PDF
    The CO2 capturing and sequestration are of importance in environmental science. Understanding of the CO2-interactions with various functional molecules including multi-N-containing superbases and heteroaromatic ring systems is essential for designing novel materials to effectively capture the CO2 gas. These interactions are investigated using density functional theory (DFT) with dispersion correction and high level wave function theory (resolution-of-identity (RI) spin-component-scaling (scs) Moller-Plesset second-order perturbation theory (MP2) and coupled cluster with single, double and perturbative triple excitations (CCSD(T))). We found intriguing molecular systems of melamine, 1,5,7-triazabicyclo[4.4.0]dec-5- ene (TBD), 7-azaindole and guanidine, which show much stronger CO2 interactions than the well-known functional systems such as amines. In particular, melamine could be exploited to design novel materials to capture the CO2 gas, since one CO2 molecule can be coordinated by four melamine molecules, which gives a binding energy (BE) of similar to 85 kJ mol(-1), much larger than in other cases.open2

    Early to late sparing of radiation damage to the parotid gland by adrenergic and muscarinic receptor agonists

    Get PDF
    Damage to salivary glands after radiotherapeutic treatment of head and neck tumours can severely impair the quality of life of the patients. In the current study we have investigated the early-to-late pathogenesis of the parotid gland after radiation. Also the ability to ameliorate the damage using pretreatment with adrenergic or muscarinic receptor agonists is studied. Rats were locally irradiated with or without i.p. pretreatment with phenylephrine (α-adrenoceptor agonist, 5 mg kg−1), isoproterenol (β-adrenoceptor agonist, 5 mg kg−1), pilocarpine (4 mg kg−1), methacholine (3.75 mg kg−1) (muscarinic receptor agonists) or methacholine plus phenylephrine. Parotid salivary flow rate, amylase secretion, the number of cells and gland histology were monitored sequentially up to 240 days postirradiation. The effects were described in 4 distinct phases. The first phase (0–10 days) was characterised by a rapid decline in flow rate without changes in amylase secretion or acinar cell number. The second phase (10–60 days) consists of a decrease in amylase secretion and is paralleled by acinar cell loss. Flow rate, amylase secretion and acinar cell numbers do not change in the third phase (60–120 days). The fourth phase (120–240 days) is determined by a further deterioration of gland function but an increase in acinar cell number, albeit with poor tissue morphology. All drug pretreatments used could reduce radiation effects in phase I and II. The protective effects were lost during phase IV, with the exception of methacholine plus phenylephrine pretreatment. The latter combination of drugs ameliorated radiation-damage throughout the entire follow-up time. The data show that combined pre-irradiation stimulation of muscarinic acetylcholine receptors with methacholine plus α-adrenoceptors with phenylephrine can reduce both early and late damage, possibly involving the PLC/PIP2 second messenger pathways. This opens perspectives for the development of clinical applicable methods for long-term sparing of parotid glands subjected to radiotherapy of head and neck cancer patients. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Effect of Cellular Quiescence on the Success of Targeted CML Therapy

    Get PDF
    Similar to tissue stem cells, primitive tumor cells in chronic myelogenous leukemia have been observed to undergo quiescence; that is, the cells can temporarily stop dividing. Using mathematical models, we investigate the effect of cellular quiescence on the outcome of therapy with targeted small molecule inhibitors.According to the models, the initiation of treatment can result in different patterns of tumor cell decline: a biphasic decline, a one-phase decline, and a reverse biphasic decline. A biphasic decline involves a fast initial phase (which roughly corresponds to the eradication of cycling cells by the drug), followed by a second and slower phase of exponential decline (corresponding to awakening and death of quiescent cells), which helps explain clinical data. We define the time when the switch to the second phase occurs, and identify parameters that determine whether therapy can drive the tumor extinct in a reasonable period of time or not. We further ask how cellular quiescence affects the evolution of drug resistance. We find that it has no effect on the probability that resistant mutants exist before therapy if treatment occurs with a single drug, but that quiescence increases the probability of having resistant mutants if patients are treated with a combination of two or more drugs with different targets. Interestingly, while quiescence prolongs the time until therapy reduces the number of cells to low levels or extinction, the therapy phase is irrelevant for the evolution of drug resistant mutants. If treatment fails as a result of resistance, the mutants will have evolved during the tumor growth phase, before the start of therapy. Thus, prevention of resistance is not promoted by reducing the quiescent cell population during therapy (e.g., by a combination of cell activation and drug-mediated killing).The mathematical models provide insights into the effect of quiescence on the basic kinetics of the response to targeted treatment of CML. They identify determinants of success in the absence of drug resistant mutants, and elucidate how quiescence influences the emergence of drug resistant mutants
    corecore