420 research outputs found
Predicting pharmacy naloxone stocking and dispensing following a statewide standing order, Indiana 2016
BACKGROUND:
While naloxone, the overdose reversal medication, has been available for decades, factors associated with its availability through pharmacies remain unclear. Studies suggest that policy and pharmacist beliefs may impact availability. Indiana passed a standing order law for naloxone in 2015 to increase access to naloxone.
OBJECTIVE:
To identify factors associated with community pharmacy naloxone stocking and dispensing following the enactment of a statewide naloxone standing order.
METHODS:
A 2016 cross-sectional census of Indiana community pharmacists was conducted following a naloxone standing order. Community, pharmacy, and pharmacist characteristics, and pharmacist attitudes about naloxone dispensing, access, and perceptions of the standing order were measured. Modified Poisson and binary logistic regression models attempted to predict naloxone stocking and dispensing, respectively.
RESULTS:
Over half (58.1%) of pharmacies stocked naloxone, yet 23.6% of pharmacists dispensed it. Most (72.5%) pharmacists believed the standing order would increase naloxone stocking, and 66.5% believed it would increase dispensing. Chain pharmacies were 3.2 times as likely to stock naloxone. Naloxone stocking was 1.6 times as likely in pharmacies with more than one full-time pharmacist. Pharmacies where pharmacists received naloxone continuing education in the past two years were 1.3 times as likely to stock naloxone. The attempted dispensing model yielded no improvement over the constant-only model.
CONCLUSIONS:
Pharmacies with larger capacity took advantage of the naloxone standing order. Predictors of pharmacist naloxone dispensing should continue to be explored to maximize naloxone access
On Probabilistic Applicative Bisimulation and Call-by-Value -Calculi (Long Version)
Probabilistic applicative bisimulation is a recently introduced coinductive
methodology for program equivalence in a probabilistic, higher-order, setting.
In this paper, the technique is applied to a typed, call-by-value,
lambda-calculus. Surprisingly, the obtained relation coincides with context
equivalence, contrary to what happens when call-by-name evaluation is
considered. Even more surprisingly, full-abstraction only holds in a symmetric
setting.Comment: 30 page
Sporopollenin as a dilution agent in artificial diets for solitary bees
Nutritional studies often require precise control of nutrients via dilution of artificial diets with indigestible material, but such studies in bees are limited. Common diluents like cellulose typically result in total mortality of bee larvae, making quantitative studies difficult. We investigated potential alternative dietary dilution agents, sporopollenin (pollen exines) and agar. We reared Osmia bicornis larvae on pollen diluted with these substances, alongside undiluted controls. Sporopollenin neither prevented nor improved survival, suggesting it is a suitable diluent. Agar appeared marginally to increase survival and its suitability requires further research. Both substances reduced cocoon weight, and sporopollenin also prolonged development, suggesting processing costs. Determining the physiological mechanisms driving these responses requires further work. Our findings should facilitate studies involving nutritional manipulations for solitary bees
Statistical mechanics of typical set decoding
The performance of ``typical set (pairs) decoding'' for ensembles of
Gallager's linear code is investigated using statistical physics. In this
decoding, error happens when the information transmission is corrupted by an
untypical noise or two or more typical sequences satisfy the parity check
equation provided by the received codeword for which a typical noise is added.
We show that the average error rate for the latter case over a given code
ensemble can be tightly evaluated using the replica method, including the
sensitivity to the message length. Our approach generally improves the existing
analysis known in information theory community, which was reintroduced by
MacKay (1999) and believed as most accurate to date.Comment: 7 page
Review: The Newsletter of the Literary Managers and Dramaturgs of the Americas, volume 13, issue 1
Contents include: Reading Review (Again), Radical from the Root, Arthur Ballet Recipient of the 2002 LMDA Loessing Award, Notes from the Lunatic Fringe, Regional Reports Info: News and Previews From All Over, Review is Inaugurating a New Section in the Next Issue: Projects-In-Process, and LMDA Prize in Drammatury 2002 The Elliott Hayes Award.
Issue editors: D.J. Hopkins, Shelley Orr, Liz Engelman, Madeline Oldham, Jacob Zimmerhttps://soundideas.pugetsound.edu/lmdareview/1026/thumbnail.jp
Investigation of the ferromagnetic transition in the correlated 4d perovskites SrRuRhO
The solid-solution SrRuRhO () is a
variable-electron-configuration system forming in the nearly-cubic-perovskite
basis, ranging from the ferromagnetic 4 to the enhanced paramagnetic
4. Polycrystalline single-phase samples were obtained over the whole
composition range by a high-pressure-heating technique, followed by
measurements of magnetic susceptibility, magnetization, specific heat,
thermopower, and electrical resistivity. The ferromagnetic order in long range
is gradually suppressed by the Rh substitution and vanishes at .
The electronic term of specific-heat shows unusual behavior near the critical
Rh concentration; the feature does not match even qualitatively with what was
reported for the related perovskites (Sr,Ca)RuO. Furthermore, another
anomaly in the specific heat was observed at .Comment: Accepted for publication in PR
Random subcubes as a toy model for constraint satisfaction problems
We present an exactly solvable random-subcube model inspired by the structure
of hard constraint satisfaction and optimization problems. Our model reproduces
the structure of the solution space of the random k-satisfiability and
k-coloring problems, and undergoes the same phase transitions as these
problems. The comparison becomes quantitative in the large-k limit. Distance
properties, as well the x-satisfiability threshold, are studied. The model is
also generalized to define a continuous energy landscape useful for studying
several aspects of glassy dynamics.Comment: 21 pages, 4 figure
On Fields with Finite Information Density
The existence of a natural ultraviolet cutoff at the Planck scale is widely
expected. In a previous Letter, it has been proposed to model this cutoff as an
information density bound by utilizing suitably generalized methods from the
mathematical theory of communication. Here, we prove the mathematical
conjectures that were made in this Letter.Comment: 31 pages, to appear in Phys.Rev.
Review: The Newsletter of the Literary Managers and Dramaturgs of the Americas, volume 15, issue 1
Contents include: Dramaturgical Debris, LMDA Conference 2004 Life, Liberty, and the Pursuit of Happiness, The Production Notebooks Edited by Mark Bly: A Conversation between Danielle Mages Amato and D.J. Hopkins, Interviews with Past LMDA Presidents Alexis Greene and David Copelin, and LMDA Regional Updates
Issue editors: D.J. Hopkins, Shelley Orr, Megan Monaghan, Madeleine Oldhamhttps://soundideas.pugetsound.edu/lmdareview/1030/thumbnail.jp
Pulsar Timing and its Application for Navigation and Gravitational Wave Detection
Pulsars are natural cosmic clocks. On long timescales they rival the
precision of terrestrial atomic clocks. Using a technique called pulsar timing,
the exact measurement of pulse arrival times allows a number of applications,
ranging from testing theories of gravity to detecting gravitational waves. Also
an external reference system suitable for autonomous space navigation can be
defined by pulsars, using them as natural navigation beacons, not unlike the
use of GPS satellites for navigation on Earth. By comparing pulse arrival times
measured on-board a spacecraft with predicted pulse arrivals at a reference
location (e.g. the solar system barycenter), the spacecraft position can be
determined autonomously and with high accuracy everywhere in the solar system
and beyond. We describe the unique properties of pulsars that suggest that such
a navigation system will certainly have its application in future astronautics.
We also describe the on-going experiments to use the clock-like nature of
pulsars to "construct" a galactic-sized gravitational wave detector for
low-frequency (f_GW ~1E-9 - 1E-7 Hz) gravitational waves. We present the
current status and provide an outlook for the future.Comment: 30 pages, 9 figures. To appear in Vol 63: High Performance Clocks,
Springer Space Science Review
- âŠ