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Statistial mehanis of typial set deodingYoshiyuki Kabashima1(�), Kazutaka Nakamura1(��) and Jort van Mourik2(���)1Department of Computational Intelligene and Systems Siene, Tokyo Institute ofTehnology, Yokohama 2268502, Japan.2The Neural Computing Researh Group, Aston University, Birmingham B4 7ET, UK.(reeived ; aepted )PACS. 89.90+n { Other areas of general interest to physiists.PACS. 89.70+ { Information siene.PACS. 05.50+q { Lattie theory and statistis; Ising problems.Abstrat. { The performane of \typial set (pairs) deoding" for ensembles of Gallager'slinear ode is investigated using statistial physis. In this deoding sheme, an error ourswhen the information transmission is orrupted by an untypial noise, or when two or moretypial sequene/noise ombinations satisfy the parity hek equations provided by the reeivedodeword. We show that the average error rate for the latter ase over a given ode ensemble anbe tightly evaluated using the replia method, inluding the sensitivity to the message length.Our approah generally improves the existing analysis known in information theory ommunityas reintrodued by MaKay (1999), whih is believed to be the most aurate to date.

Triggered by ative investigations on error orreting odes in both information theory (IT)and statistial physis (SP) ommunities [9, 17, 1, 6, 7, 21, 16℄, there is growing interest in therelationship between IT and SP. As it has turned out that both frameworks an be employedto investigate similar subjets, it is natural to expet that standard tehniques known in oneframework bring about novel developments in the other, and vie versa.The purpose of this Letter is to present suh an example. More spei�ally, we will showthat a method to evaluate the performane of well established error orreting odes in ITommunity [1, 9, 20℄ an be generally improved by introduing the replia method. Thisserves as a diret answer to the question from IT researhers why the methods from physisgenerally seem to provide more optimisti bounds than those known in the IT literature. As willbeome lear in our formulation, the IT method is naturally linked to the SP analysis throughthe number of replias � � 0. In a general senario, the N dimensional Boolean messagex 2 f0; 1gN is enoded to the M(> N) dimensional Boolean vetor y0, and transmitted(�) kaba�dis.titeh.a.jp(��) knakamur�fe.dis.titeh.a.jp(���) vanmourj�aston.a.uk Typeset using EURO-LATEX
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2 EUROPHYSICS LETTERSvia a noisy hannel. Although here we have opted for a Binary Symmetri Channel (BSC)haraterized by an independent ip probability p per bit, other transmission hannels mayalso be examined within a similar framework. At the other end of the hannel the orruptedodeword is deoded using the strutured odeword redundany.The error orreting ode that we fous on here, is Gallager's linear ode [3℄. This odewas originally introdued by Gallager about forty years ago but was forgotten soon afterthe proposal due to the tehnologial limitations in those days. However, sine the reentredisovery by MaKay and Neal [9℄, it is now reognized as one of the best odes to date.A Gallager ode is haraterized by a randomly generated (M�N) �M Boolean sparseparity hek matrix H , with K and C(� 3) non-zero (unit) elements per row and olumn,respetively. Enoding the message vetor x is arried out using the M�N generating matrixGT satisfying the ondition HGT =0, where y0=GTx (mod 2). The M bit odeword y0 istransmitted via a noisy hannel (BSC); the orrupted vetor y=y0 + n0 (mod 2) is reeivedat the other end, where n02f0; 1gM represents a noise vetor with an independent probabilityp per bit of having a value 1. Deoding is arried out by multiplying y by the parity hekmatrix H , to obtain the syndrome vetor z=Hy=H(GTx+n0)=Hn0 (mod 2), and to �nda solution to the parity hek equationHn=z (mod 2) ; (1)for estimating the true noise vetor n0. The estimate x for the original message is thenobtained from the equation GTx=y�n (mod 2).Several shemes an be employed for solving Eq. (1). In reent years, maximum a poste-riori (MAP) deoding and the maximizer of posterior marginal (MPM) deoding have beenwidely investigated [21, 15, 18, 7℄, whih orrespond to deoding at zero and at Nishimori'stemperature, respetively. Here, we will evaluate the performane of a sheme alled typialset (pairs) deoding, whih was pioneered by Shannon [20℄, and reintrodued by MaKay [9℄for analyzing the Gallager-type odes. Although this deoding method is slightly weaker inreduing the blok and/or bit error rates, it is now beoming popular in IT ommunity [1, 2, 9℄sine a rigorous analysis is easier than for the two deoding shemes mentioned above.In order to explain typial set deoding, we must �rst introdue the de�nition of beingtypial. Due to the law of large numbers, a noise vetor n generated by the BSC satis�es theondition ����� 1M MXl=1 nl � p����� � �M ; (2)with a high probability for large M and any sequene of positive number �M � O(M�) (0 < < 1=2). A vetor n is lassi�ed as typial when this ondition is satis�ed, and the typial setis the set of all typial vetors.Then, one an de�ne the typial set deoding as a sheme to selet a vetor n that belongsto the typial set and satis�es Eq. (1), as an estimate of the true noise n0. In the ase that twoor more typial vetors satisfy Eq. (1), an error is automatially delared [9℄. For this sheme,two types of deoding error an happen: the �rst possibility, referred to as a type I error here,happens when the true noise n0 is not typial, while the other one, referred to as a type IIerror, happens when there are two or more typial vetors that satisfy Eq. (1) while the truenoise n0 is typial. It an be shown that the probability for the type I error, PI , vanishes inthe limit M ! 1. Therefore, we will here fous on the evaluation of the probability for atype II error, PII .In what follows, we replae the Boolean notation by a binary one through the mappingf0; 1;+g ! f+1;�1;�g. We an now introdue the error indiator funtion that takes the



Y. Kabashima et al STATISTICAL MECHANICS OF TYPICAL SET DECODING 3value 1 when an error ours and 0 otherwise:� �n0; H� = lim�!+0V�NF (n0; H); (3)with VNF (n0; H) � Trn6=n0 M�NY�=1 Æ0� Yl2L(�)n0l ; Yl2L(�)nl1A Æ MXl=1 nl �M(1� 2p)!= Trn6=1M�NY�=1 Æ0�1; Yl2L(�)nl1A Æ MXl=1 n0l nl �M(1� 2p)! ; (4)where 1 denotes the M dimensional vetor with all elements 1, and where L(�) is the set ofindies that have non-zero elements in the � th row in the parity hek matrixH . In the seondline of Eq. (4), we have introdued the gauge transform nl ! n0l nl for further onveniene.The quantity VNF (n0; H) is the number of vetors that di�er from n0 in the intersetion ofthe typial set and the solution spae of Eq. (1).From the de�nition, the probability for a type II error for a given matrix H is given byPII (H) = D�(n0; H)Æ �PMl=1 n0l �M(1� 2p)�En0 , where h� � �in0 = Trn0 (� � �) exp[FPMl=1 n0l ℄=(2 oshF )M with F = 12 ln[(1� p)=p℄. Sine the parity hek matrix H is generated somewhatrandomly, it is natural to evaluate the average of PII (H) over an ensemble of odes with givenK and C as a performane measure for the ode ensemble.In the large M limit, this averageis given by PII = lim�!+0 exp [�ME(�)℄, withE(�) � � 1M ln**V�NF (n0; H)Æ MXl=1 n0l �M(1� 2p)!+n0+H ; (5)where h� � �iH is the uniform average over the parity hek matries with given K and C.At this point, it is worth mentioning some general properties of the exponent E(�):- In the M !1 limit, for a suÆiently small noise p, PII is expeted to vanish, orrespondingto E(0) = lim�!+0 E(�) > 0. The highest noise level p with E(0) > 0 is the so-alled errorthreshold [1℄. Furthermore, the value of E(0)(> 0) gives the sensitivity of PII with respet tothe message length and is a performane measure of the ode ensemble for when M is �nite.- Sine VNF (n0; H) takes the values 0; 1; 2; : : :, V�NF (n0; H) must inrease with �(> 0), andhene E(�) must be a dereasing funtion of �(> 0). We have that�E(�)�� = � 1M DDSNF (n0; H) V�NF (n0; H) Æ �PMl=1 n0l �M(1� 2p)�En0EHDDV�NF (n0; H) Æ �PMl=1 n0l �M(1� 2p)�En0EH < 0; (6)where SNF (n0; H)=lnVNF (n0; H), i.e. the entropy of the solutions (6= n0) of Eq. (1) in thetypial set. Furthermore, we have that �2E(�)=��2 < 0, suh that E(�) is a onvex funtion.We are now ready to onnet the urrent argument to the existing analysis of the typialset deoding [20, 9, 1℄. Sine E(0) � E(1), the ondition E(1) = 0 yields a lower bound forp. For �=1 in Eq. (5), it is onvenient to insert the identity 1= R Md! Æ �PMl=1 nl �M!�in the �nal form of Eq. (4). Then, for a sequene n that satis�es (1=M)PMl=1 nl = !, oneobtains DTrn Æ �PMl=1 n0l nl �M(1� 2p)� Æ �PMl=1 n0l �M(1� 2p)�En0 � exp [�MK(!; p)℄,whereK(!; p)=� 1+!2 �H � 2(1�2p)1+! �+� 1�!2 � ln 2�H(1�2p) andH(x)=� (1+x)2 ln (1+x)2 � (1�x)2 ln (1�x)2 .



4 EUROPHYSICS LETTERSThe remaining average required in Eq. (5) is now evaluated as hTrn Æ (Pl=1 nl �M!)QM�N�=1 Æ �1;Ql2L(�) nl�EH � exp [MR (!)℄. The exponent R (!) is the so-alled weightenumerator [1, 9℄, whih in the urrent ontext(1), provides an averaged distribution of thedistanes between the true noise n0 and other vetors that satisfy Eq. (1), and plays animportant role in the evaluation of the performane of odes in onventional oding theory[10℄. One obtains E(1) = Ext!(6=1) fK(!; p)�R(!)g, orresponding to Eq. (4.7) in [1℄.However, it should be emphasized here that the alulation above (for � = 1) generallyoverestimates the deoding error probability. This is beause for � = 1, � �n0; H�, whihshould be one when a type II error ours is replaed by the number of wrong vetors VNFwhih an be exponentially large in M , and therefore ontributes too muh for ounting oneerror. To obtain an aurate (exat) estimate suppressing suh an overestimation, one has tointrodue a positive exponent � in the alulation and take a limit �! +0 as is shown in Eq.(3). This an be done by means of the replia method, where � beomes the number of replias.This proedure gives rise to a set of order parameters q�;�;:::; = (1=M)PMl=1 Zln�l n�l : : : nl ,where �; �; : : : represent replia indies and where the variables Zl; l = 1; : : : ;M arrise fromenforing the restrition that there are C onnetions per index l (see [7℄ for details).To proeed with the alulation one requires a ertain ansatz about the symmetry of theorder parameters. As a �rst approximation we assume replia symmetry (RS) in the orderparameters q�;�;:::; = q R dx �(x) xl, and their onjugate variables bq�;�;:::; = bq R dbx b� (bx)bxl,where l denotes the number of replia indies, q and bq are normalization variables for de�ning�(�) and b�(�) as distributions. Unspei�ed integrals are arried out over the interval [�1; 1℄.Details of a similar alulation an be found in [7℄.Originally, the summation Trn 6=1(�) exludes the ase n = 1, but one an show that in thelarge M limit, this beomes idential to the full summation in the non-ferromagneti phase,where �(x) 6= Æ(x�1) and b�(x) 6= Æ(bx�1). In addition, we employ Morita's sheme [12℄ whihin this ase onverts the restrited annealed average with respet to n0 to a quenhed one:1M ln*(� � �)� Æ MXl=1 n0l �M(1� 2p)!+n0 = 1M hln(� � �)in0 ; (7)to simplify the alulation of the average over n0 in Eq. (5) onsiderably. We obtainE(�) = Ext�fq;bq;�(�);b�(�);Gg(�C qKK Z KYi=1 dxi�(xi) 1 +QKi=1 xi2 !�� *ln"Z CY�=1 dbx� b�(bx�) Trn=�1 eGn0n CY�=1�1 + bx� n2 �!�#+n0� C ln bq+Cqbq Z dx dbx �(x) b�(bx)�1 + xbx2 �� +�CK � C�+ � G(1� 2p)� ; (8)where h(� � �)in0 = Trn0=�1(� � �) exp �Fn0� =2 oshF and Ext�f���g denotes the funtional extrem-ization exluding the possibility of �(x) = Æ(x�1) and b�(bx) = Æ(bx�1) as is introdued in [8℄.-In the limit K;C ! 1 (keeping the ode rate R = N=M = 1� C=K �nite), we �nd twoanalytial solutions for �(x) and b�(bx):(1) The weight enumerator is usually introdued for the distane between odewords [1, 9, 10℄.However, sine y0�y1 = n0�n1 (mod 2) holds for two sets of Boolean vetors (y0;n0) and (y1;n1)that satisfy y = y0 + n0 = y1 + n1 (mod 2), the distane between the noise vetors n0 and n1 isidential to that for the odewords y0 and y1.



Y. Kabashima et al STATISTICAL MECHANICS OF TYPICAL SET DECODING 51. �(x) = 12 [(1 + (1�2p))Æ(x� (1�2p)) + (1� (1�2p))Æ(x+ (1�2p))℄, b�(bx) = Æ(bx)2. �(x) = 12 [Æ(x� 1) + Æ(x+ 1)℄, b�(bx) = 12 [Æ(bx� 1) + Æ(bx+ 1)℄.providing E(�) = � [H((1� 2p))�(1�R) ln2℄ and E(�) = H((1�2p))�(1�R) ln 2, respetively.One an show that both solutions are loally stable against replia symmetry breaking per-turbations. Seleting the relevant branh, i.e. the one with the lower exponent for � � 1, andtaking the limit �! 0 [5℄, one obtains the exponent asE(0) = lim�!+0 E(�) = � (R �R) ln 2; R < R,0; R > R, (9)where R = 1 + p log2 p+ (1�p) log2(1�p) orresponds to Shannon's limit [19℄.Note that in the viinity of R � R, this exponent exeeds the upper bound for the possiblereliability funtion that represents the vanishing rate of the deoding error probability for thebest ode [11, 8℄. However, this does not imply a ontradition beause the urrent analysis isjust for PII while the onvergene rate of PI is slower than that of the reliability funtion.-For �nite K and C, one has to obtain E(�) via numerial methods. Like in the ase ofK;C !1, generally two branhes of solutions appear:1. ontinuous distributions for �(x) and b�(bx), for whih lim�!+0 E(�) = 0.2. � independent frozen distributions �(x) = 12 [(1 + b) Æ(x� 1) + (1� b) Æ(x + 1)℄,b�(bx) = 12 [(1 +bb) Æ(bx� 1) + (1�bb) Æ(bx+ 1)℄.The parameters b and bb are determined from the extremization problem (8) by setting � = 1,the funtional extremization with respet to �(�) and b�(�) is then redued to that of the �rstmoments b = R dxx�(x) and bb = R dbxbxb�(bx). The exponent of this branh is ompletely frozento that for � = 1 as E(�) = E(1) for 8� > 0. Although the distributions of the two branheslook quite di�erent, their exponents oinide at � = 1 in any situation.Note that the frozen branh orresponds to the onventional IT analysis [1, 9℄, and wouldprovide the exat estimate in absene of other solutions. However, in order to take anappropriate limit lim�!+0 E(�), one has to selet the dominant branh for � � 1 [5℄ amongthe existing solutions, and our analysis indiates that the frozen branh does not neessarilyprovide the orret exponent for �! +0 (Fig. 1).When the hannel noise p is suÆiently high (Fig. 1 (a)), the exponent for the ontinuousbranh is monotonially dereasing with respet to � whih implies this is the dominant branhfor � � 1. This provides lim�!+0 E(�) = 0. However, for lower p, E(�) of the ontinuous branhis maximized to a positive value at a ertain value �g(Fig. 1 (b)). In this situation, the solutionfor 0 < � < �g is physially wrong beause inequality (6) does not hold. This implies that theRS ansatz is no longer valid, and the frozen replia symmetry breaking (RSB) solution [4℄ (aone step RSB ansatz under the onstraint (1=M)na � nb = 1 for replia indies a and b in thesame subgroup) is a suitable sheme for obtaining a onsistent solution. Employing this 1RSBsolution, one �nds E(�) = E(�g) for 0 < � < �g, whih implies lim�!+0 E(�) = E(�g) > 0indiating a vanishing behaviour of PII � exp [�ME(�g)℄. Hene, the ritial ondition fordetermining the error threshold p is given by �E(�)=��j�!+0 = 0, as omputed from theontinuous solution. Employing the gauge transform [15℄, one an show that the variationalparameter G in Eq. (8) enforing PMl=1 n0l nl =M(1� 2p) oinides with F in this limit. Theritial ondition an now be summarized asF (1� 2p)� 1M **ln24 Trn 6=1M�NY�=1 Æ0�1; Yl2L(�)nl1A eFPMl=1 n0l nl35+H+n0 = 0; (10)
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Fig. 1. { Appropriate limits for lim�!+0 E(�) in the ase of �nite K and C. The solution that has thelower exponent for � � 1 should be seleted as the relevant branh [5℄, whih is drawn as a thik urveor line in eah ase. For p � p (a), the ontinuous solution is relevant while the 1(frozen)RSB solutionwhih emerges from this solution at � = �g provides an appropriate exponent E(�g) for pb � p < p(b). For 0 < p < pb (), the frozen (RS) solution is relevant. In the limit K; C ! 1, the situation(b) does not appear.
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Fig. 2. { (a): Numerially omputed E(�) of the ontinuous branh for p = 0:0915; 0:0990 for K = 6and C = 3 (R = 1=2). Symbols and error bars are obtained from 50 numerial solutions. Curves areomputed via a quadrati �t. For p = 0:0915, E(�) is maximized to a positive value E(�g) ' 2:5�10�3for �g ' 0:5 while it vanishes at � ' 1 as is suggested in the IT literature [1℄. On the other hand, forp = 0:0990, our predited threshold, it is maximized to zero at � ' 0, whih implies that this is theorret threshold. (b): Comparison of the estimates of p between the IT and the urrent methods issummarized in a table. The estimates for the IT method are taken from [1℄. The numerial preisionis up to the last digit for the urrent method. Shannon's limit denotes the highest possible p for agiven ode rate.whih is idential to what has been obtained for the phase boundary of the ferro-paramagnetitransition along the Nishimori's temperature predited by the existing replia analysis [7, 8℄.As p is redued further, the position of the maximum �g moves to the right and exeeds� = 1 at another ritial noise rate pb. This implies that below pb the limit �! +0 is governedby the frozen (RS) solution whih is idential to what is given by the onventional IT analysis(Fig. 1()). Sine this situation is realized only suÆiently below the threshold, the solutionis of no use for diret evaluation of p, although it provides a lower bound.Finally, we examined the ase of K = 6 and C = 3 to demonstrate the auray of theestimated threshold. We numerially evaluated E(�) of the ontinuous branh for p = 0:0915,a reent highly aurate estimate of the error threshold for this parameter hoie [1℄ and forp = 0:0990, whih is the threshold predited by the replia method [14, 8℄. The numerialresults are obtained by approximating �(�) and b�(�) using 106 dimensional vetors and iteratingthe saddle point equations until onvergene. The obtained results are shown in Fig. 2 (a); it
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