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Statisti
al me
hani
s of typi
al set de
odingYoshiyuki Kabashima1(�), Kazutaka Nakamura1(��) and Jort van Mourik2(���)1Department of Computational Intelligen
e and Systems S
ien
e, Tokyo Institute ofTe
hnology, Yokohama 2268502, Japan.2The Neural Computing Resear
h Group, Aston University, Birmingham B4 7ET, UK.(re
eived ; a

epted )PACS. 89.90+n { Other areas of general interest to physi
ists.PACS. 89.70+
 { Information s
ien
e.PACS. 05.50+q { Latti
e theory and statisti
s; Ising problems.Abstra
t. { The performan
e of \typi
al set (pairs) de
oding" for ensembles of Gallager'slinear 
ode is investigated using statisti
al physi
s. In this de
oding s
heme, an error o

urswhen the information transmission is 
orrupted by an untypi
al noise, or when two or moretypi
al sequen
e/noise 
ombinations satisfy the parity 
he
k equations provided by the re
eived
odeword. We show that the average error rate for the latter 
ase over a given 
ode ensemble 
anbe tightly evaluated using the repli
a method, in
luding the sensitivity to the message length.Our approa
h generally improves the existing analysis known in information theory 
ommunityas reintrodu
ed by Ma
Kay (1999), whi
h is believed to be the most a

urate to date.

Triggered by a
tive investigations on error 
orre
ting 
odes in both information theory (IT)and statisti
al physi
s (SP) 
ommunities [9, 17, 1, 6, 7, 21, 16℄, there is growing interest in therelationship between IT and SP. As it has turned out that both frameworks 
an be employedto investigate similar subje
ts, it is natural to expe
t that standard te
hniques known in oneframework bring about novel developments in the other, and vi
e versa.The purpose of this Letter is to present su
h an example. More spe
i�
ally, we will showthat a method to evaluate the performan
e of well established error 
orre
ting 
odes in IT
ommunity [1, 9, 20℄ 
an be generally improved by introdu
ing the repli
a method. Thisserves as a dire
t answer to the question from IT resear
hers why the methods from physi
sgenerally seem to provide more optimisti
 bounds than those known in the IT literature. As willbe
ome 
lear in our formulation, the IT method is naturally linked to the SP analysis throughthe number of repli
as � � 0. In a general s
enario, the N dimensional Boolean messagex 2 f0; 1gN is en
oded to the M(> N) dimensional Boolean ve
tor y0, and transmitted(�) kaba�dis.tite
h.a
.jp(��) knakamur�fe.dis.tite
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2 EUROPHYSICS LETTERSvia a noisy 
hannel. Although here we have opted for a Binary Symmetri
 Channel (BSC)
hara
terized by an independent 
ip probability p per bit, other transmission 
hannels mayalso be examined within a similar framework. At the other end of the 
hannel the 
orrupted
odeword is de
oded using the stru
tured 
odeword redundan
y.The error 
orre
ting 
ode that we fo
us on here, is Gallager's linear 
ode [3℄. This 
odewas originally introdu
ed by Gallager about forty years ago but was forgotten soon afterthe proposal due to the te
hnologi
al limitations in those days. However, sin
e the re
entredis
overy by Ma
Kay and Neal [9℄, it is now re
ognized as one of the best 
odes to date.A Gallager 
ode is 
hara
terized by a randomly generated (M�N) �M Boolean sparseparity 
he
k matrix H , with K and C(� 3) non-zero (unit) elements per row and 
olumn,respe
tively. En
oding the message ve
tor x is 
arried out using the M�N generating matrixGT satisfying the 
ondition HGT =0, where y0=GTx (mod 2). The M bit 
odeword y0 istransmitted via a noisy 
hannel (BSC); the 
orrupted ve
tor y=y0 + n0 (mod 2) is re
eivedat the other end, where n02f0; 1gM represents a noise ve
tor with an independent probabilityp per bit of having a value 1. De
oding is 
arried out by multiplying y by the parity 
he
kmatrix H , to obtain the syndrome ve
tor z=Hy=H(GTx+n0)=Hn0 (mod 2), and to �nda solution to the parity 
he
k equationHn=z (mod 2) ; (1)for estimating the true noise ve
tor n0. The estimate x for the original message is thenobtained from the equation GTx=y�n (mod 2).Several s
hemes 
an be employed for solving Eq. (1). In re
ent years, maximum a poste-riori (MAP) de
oding and the maximizer of posterior marginal (MPM) de
oding have beenwidely investigated [21, 15, 18, 7℄, whi
h 
orrespond to de
oding at zero and at Nishimori'stemperature, respe
tively. Here, we will evaluate the performan
e of a s
heme 
alled typi
alset (pairs) de
oding, whi
h was pioneered by Shannon [20℄, and reintrodu
ed by Ma
Kay [9℄for analyzing the Gallager-type 
odes. Although this de
oding method is slightly weaker inredu
ing the blo
k and/or bit error rates, it is now be
oming popular in IT 
ommunity [1, 2, 9℄sin
e a rigorous analysis is easier than for the two de
oding s
hemes mentioned above.In order to explain typi
al set de
oding, we must �rst introdu
e the de�nition of beingtypi
al. Due to the law of large numbers, a noise ve
tor n generated by the BSC satis�es the
ondition ����� 1M MXl=1 nl � p����� � �M ; (2)with a high probability for large M and any sequen
e of positive number �M � O(M�
) (0 <
 < 1=2). A ve
tor n is 
lassi�ed as typi
al when this 
ondition is satis�ed, and the typi
al setis the set of all typi
al ve
tors.Then, one 
an de�ne the typi
al set de
oding as a s
heme to sele
t a ve
tor n that belongsto the typi
al set and satis�es Eq. (1), as an estimate of the true noise n0. In the 
ase that twoor more typi
al ve
tors satisfy Eq. (1), an error is automati
ally de
lared [9℄. For this s
heme,two types of de
oding error 
an happen: the �rst possibility, referred to as a type I error here,happens when the true noise n0 is not typi
al, while the other one, referred to as a type IIerror, happens when there are two or more typi
al ve
tors that satisfy Eq. (1) while the truenoise n0 is typi
al. It 
an be shown that the probability for the type I error, PI , vanishes inthe limit M ! 1. Therefore, we will here fo
us on the evaluation of the probability for atype II error, PII .In what follows, we repla
e the Boolean notation by a binary one through the mappingf0; 1;+g ! f+1;�1;�g. We 
an now introdu
e the error indi
ator fun
tion that takes the



Y. Kabashima et al STATISTICAL MECHANICS OF TYPICAL SET DECODING 3value 1 when an error o

urs and 0 otherwise:� �n0; H� = lim�!+0V�NF (n0; H); (3)with VNF (n0; H) � Trn6=n0 M�NY�=1 Æ0� Yl2L(�)n0l ; Yl2L(�)nl1A Æ MXl=1 nl �M(1� 2p)!= Trn6=1M�NY�=1 Æ0�1; Yl2L(�)nl1A Æ MXl=1 n0l nl �M(1� 2p)! ; (4)where 1 denotes the M dimensional ve
tor with all elements 1, and where L(�) is the set ofindi
es that have non-zero elements in the � th row in the parity 
he
k matrixH . In the se
ondline of Eq. (4), we have introdu
ed the gauge transform nl ! n0l nl for further 
onvenien
e.The quantity VNF (n0; H) is the number of ve
tors that di�er from n0 in the interse
tion ofthe typi
al set and the solution spa
e of Eq. (1).From the de�nition, the probability for a type II error for a given matrix H is given byPII (H) = D�(n0; H)Æ �PMl=1 n0l �M(1� 2p)�En0 , where h� � �in0 = Trn0 (� � �) exp[FPMl=1 n0l ℄=(2 
oshF )M with F = 12 ln[(1� p)=p℄. Sin
e the parity 
he
k matrix H is generated somewhatrandomly, it is natural to evaluate the average of PII (H) over an ensemble of 
odes with givenK and C as a performan
e measure for the 
ode ensemble.In the large M limit, this averageis given by PII = lim�!+0 exp [�ME(�)℄, withE(�) � � 1M ln**V�NF (n0; H)Æ MXl=1 n0l �M(1� 2p)!+n0+H ; (5)where h� � �iH is the uniform average over the parity 
he
k matri
es with given K and C.At this point, it is worth mentioning some general properties of the exponent E(�):- In the M !1 limit, for a suÆ
iently small noise p, PII is expe
ted to vanish, 
orrespondingto E(0) = lim�!+0 E(�) > 0. The highest noise level p
 with E(0) > 0 is the so-
alled errorthreshold [1℄. Furthermore, the value of E(0)(> 0) gives the sensitivity of PII with respe
t tothe message length and is a performan
e measure of the 
ode ensemble for when M is �nite.- Sin
e VNF (n0; H) takes the values 0; 1; 2; : : :, V�NF (n0; H) must in
rease with �(> 0), andhen
e E(�) must be a de
reasing fun
tion of �(> 0). We have that�E(�)�� = � 1M DDSNF (n0; H) V�NF (n0; H) Æ �PMl=1 n0l �M(1� 2p)�En0EHDDV�NF (n0; H) Æ �PMl=1 n0l �M(1� 2p)�En0EH < 0; (6)where SNF (n0; H)=lnVNF (n0; H), i.e. the entropy of the solutions (6= n0) of Eq. (1) in thetypi
al set. Furthermore, we have that �2E(�)=��2 < 0, su
h that E(�) is a 
onvex fun
tion.We are now ready to 
onne
t the 
urrent argument to the existing analysis of the typi
alset de
oding [20, 9, 1℄. Sin
e E(0) � E(1), the 
ondition E(1) = 0 yields a lower bound forp
. For �=1 in Eq. (5), it is 
onvenient to insert the identity 1= R Md! Æ �PMl=1 nl �M!�in the �nal form of Eq. (4). Then, for a sequen
e n that satis�es (1=M)PMl=1 nl = !, oneobtains DTrn Æ �PMl=1 n0l nl �M(1� 2p)� Æ �PMl=1 n0l �M(1� 2p)�En0 � exp [�MK(!; p)℄,whereK(!; p)=� 1+!2 �H � 2(1�2p)1+! �+� 1�!2 � ln 2�H(1�2p) andH(x)=� (1+x)2 ln (1+x)2 � (1�x)2 ln (1�x)2 .



4 EUROPHYSICS LETTERSThe remaining average required in Eq. (5) is now evaluated as hTrn Æ (Pl=1 nl �M!)QM�N�=1 Æ �1;Ql2L(�) nl�EH � exp [MR (!)℄. The exponent R (!) is the so-
alled weightenumerator [1, 9℄, whi
h in the 
urrent 
ontext(1), provides an averaged distribution of thedistan
es between the true noise n0 and other ve
tors that satisfy Eq. (1), and plays animportant role in the evaluation of the performan
e of 
odes in 
onventional 
oding theory[10℄. One obtains E(1) = Ext!(6=1) fK(!; p)�R(!)g, 
orresponding to Eq. (4.7) in [1℄.However, it should be emphasized here that the 
al
ulation above (for � = 1) generallyoverestimates the de
oding error probability. This is be
ause for � = 1, � �n0; H�, whi
hshould be one when a type II error o

urs is repla
ed by the number of wrong ve
tors VNFwhi
h 
an be exponentially large in M , and therefore 
ontributes too mu
h for 
ounting oneerror. To obtain an a

urate (exa
t) estimate suppressing su
h an overestimation, one has tointrodu
e a positive exponent � in the 
al
ulation and take a limit �! +0 as is shown in Eq.(3). This 
an be done by means of the repli
a method, where � be
omes the number of repli
as.This pro
edure gives rise to a set of order parameters q�;�;:::;
 = (1=M)PMl=1 Zln�l n�l : : : n
l ,where �; �; : : : represent repli
a indi
es and where the variables Zl; l = 1; : : : ;M arrise fromenfor
ing the restri
tion that there are C 
onne
tions per index l (see [7℄ for details).To pro
eed with the 
al
ulation one requires a 
ertain ansatz about the symmetry of theorder parameters. As a �rst approximation we assume repli
a symmetry (RS) in the orderparameters q�;�;:::;
 = q R dx �(x) xl, and their 
onjugate variables bq�;�;:::;
 = bq R dbx b� (bx)bxl,where l denotes the number of repli
a indi
es, q and bq are normalization variables for de�ning�(�) and b�(�) as distributions. Unspe
i�ed integrals are 
arried out over the interval [�1; 1℄.Details of a similar 
al
ulation 
an be found in [7℄.Originally, the summation Trn 6=1(�) ex
ludes the 
ase n = 1, but one 
an show that in thelarge M limit, this be
omes identi
al to the full summation in the non-ferromagneti
 phase,where �(x) 6= Æ(x�1) and b�(x) 6= Æ(bx�1). In addition, we employ Morita's s
heme [12℄ whi
hin this 
ase 
onverts the restri
ted annealed average with respe
t to n0 to a quen
hed one:1M ln*(� � �)� Æ MXl=1 n0l �M(1� 2p)!+n0 = 1M hln(� � �)in0 ; (7)to simplify the 
al
ulation of the average over n0 in Eq. (5) 
onsiderably. We obtainE(�) = Ext�fq;bq;�(�);b�(�);Gg(�C qKK Z KYi=1 dxi�(xi) 1 +QKi=1 xi2 !�� *ln"Z CY�=1 dbx� b�(bx�) Trn=�1 eGn0n CY�=1�1 + bx� n2 �!�#+n0� C ln bq+Cqbq Z dx dbx �(x) b�(bx)�1 + xbx2 �� +�CK � C�+ � G(1� 2p)� ; (8)where h(� � �)in0 = Trn0=�1(� � �) exp �Fn0� =2 
oshF and Ext�f���g denotes the fun
tional extrem-ization ex
luding the possibility of �(x) = Æ(x�1) and b�(bx) = Æ(bx�1) as is introdu
ed in [8℄.-In the limit K;C ! 1 (keeping the 
ode rate R = N=M = 1� C=K �nite), we �nd twoanalyti
al solutions for �(x) and b�(bx):(1) The weight enumerator is usually introdu
ed for the distan
e between 
odewords [1, 9, 10℄.However, sin
e y0�y1 = n0�n1 (mod 2) holds for two sets of Boolean ve
tors (y0;n0) and (y1;n1)that satisfy y = y0 + n0 = y1 + n1 (mod 2), the distan
e between the noise ve
tors n0 and n1 isidenti
al to that for the 
odewords y0 and y1.



Y. Kabashima et al STATISTICAL MECHANICS OF TYPICAL SET DECODING 51. �(x) = 12 [(1 + (1�2p))Æ(x� (1�2p)) + (1� (1�2p))Æ(x+ (1�2p))℄, b�(bx) = Æ(bx)2. �(x) = 12 [Æ(x� 1) + Æ(x+ 1)℄, b�(bx) = 12 [Æ(bx� 1) + Æ(bx+ 1)℄.providing E(�) = � [H((1� 2p))�(1�R) ln2℄ and E(�) = H((1�2p))�(1�R) ln 2, respe
tively.One 
an show that both solutions are lo
ally stable against repli
a symmetry breaking per-turbations. Sele
ting the relevant bran
h, i.e. the one with the lower exponent for � � 1, andtaking the limit �! 0 [5℄, one obtains the exponent asE(0) = lim�!+0 E(�) = � (R
 �R) ln 2; R < R
,0; R > R
, (9)where R
 = 1 + p log2 p+ (1�p) log2(1�p) 
orresponds to Shannon's limit [19℄.Note that in the vi
inity of R � R
, this exponent ex
eeds the upper bound for the possiblereliability fun
tion that represents the vanishing rate of the de
oding error probability for thebest 
ode [11, 8℄. However, this does not imply a 
ontradi
tion be
ause the 
urrent analysis isjust for PII while the 
onvergen
e rate of PI is slower than that of the reliability fun
tion.-For �nite K and C, one has to obtain E(�) via numeri
al methods. Like in the 
ase ofK;C !1, generally two bran
hes of solutions appear:1. 
ontinuous distributions for �(x) and b�(bx), for whi
h lim�!+0 E(�) = 0.2. � independent frozen distributions �(x) = 12 [(1 + b) Æ(x� 1) + (1� b) Æ(x + 1)℄,b�(bx) = 12 [(1 +bb) Æ(bx� 1) + (1�bb) Æ(bx+ 1)℄.The parameters b and bb are determined from the extremization problem (8) by setting � = 1,the fun
tional extremization with respe
t to �(�) and b�(�) is then redu
ed to that of the �rstmoments b = R dxx�(x) and bb = R dbxbxb�(bx). The exponent of this bran
h is 
ompletely frozento that for � = 1 as E(�) = E(1) for 8� > 0. Although the distributions of the two bran
heslook quite di�erent, their exponents 
oin
ide at � = 1 in any situation.Note that the frozen bran
h 
orresponds to the 
onventional IT analysis [1, 9℄, and wouldprovide the exa
t estimate in absen
e of other solutions. However, in order to take anappropriate limit lim�!+0 E(�), one has to sele
t the dominant bran
h for � � 1 [5℄ amongthe existing solutions, and our analysis indi
ates that the frozen bran
h does not ne
essarilyprovide the 
orre
t exponent for �! +0 (Fig. 1).When the 
hannel noise p is suÆ
iently high (Fig. 1 (a)), the exponent for the 
ontinuousbran
h is monotoni
ally de
reasing with respe
t to � whi
h implies this is the dominant bran
hfor � � 1. This provides lim�!+0 E(�) = 0. However, for lower p, E(�) of the 
ontinuous bran
his maximized to a positive value at a 
ertain value �g(Fig. 1 (b)). In this situation, the solutionfor 0 < � < �g is physi
ally wrong be
ause inequality (6) does not hold. This implies that theRS ansatz is no longer valid, and the frozen repli
a symmetry breaking (RSB) solution [4℄ (aone step RSB ansatz under the 
onstraint (1=M)na � nb = 1 for repli
a indi
es a and b in thesame subgroup) is a suitable s
heme for obtaining a 
onsistent solution. Employing this 1RSBsolution, one �nds E(�) = E(�g) for 0 < � < �g, whi
h implies lim�!+0 E(�) = E(�g) > 0indi
ating a vanishing behaviour of PII � exp [�ME(�g)℄. Hen
e, the 
riti
al 
ondition fordetermining the error threshold p
 is given by �E(�)=��j�!+0 = 0, as 
omputed from the
ontinuous solution. Employing the gauge transform [15℄, one 
an show that the variationalparameter G in Eq. (8) enfor
ing PMl=1 n0l nl =M(1� 2p) 
oin
ides with F in this limit. The
riti
al 
ondition 
an now be summarized asF (1� 2p)� 1M **ln24 Trn 6=1M�NY�=1 Æ0�1; Yl2L(�)nl1A eFPMl=1 n0l nl35+H+n0 = 0; (10)
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Fig. 1. { Appropriate limits for lim�!+0 E(�) in the 
ase of �nite K and C. The solution that has thelower exponent for � � 1 should be sele
ted as the relevant bran
h [5℄, whi
h is drawn as a thi
k 
urveor line in ea
h 
ase. For p � p
 (a), the 
ontinuous solution is relevant while the 1(frozen)RSB solutionwhi
h emerges from this solution at � = �g provides an appropriate exponent E(�g) for pb � p < p
(b). For 0 < p < pb (
), the frozen (RS) solution is relevant. In the limit K; C ! 1, the situation(b) does not appear.
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(a) (b)(K;C) (6; 3) (5; 3) (6; 4) (4; 3)Code rate 1=2 2=5 1=3 1=4IT 0.0915 0.129 0.170 0.205Current Method 0.0990 0.136 0.173 0.209Shannon's limit 0.109 0.145 0.174 0.214
Fig. 2. { (a): Numeri
ally 
omputed E(�) of the 
ontinuous bran
h for p = 0:0915; 0:0990 for K = 6and C = 3 (R = 1=2). Symbols and error bars are obtained from 50 numeri
al solutions. Curves are
omputed via a quadrati
 �t. For p = 0:0915, E(�) is maximized to a positive value E(�g) ' 2:5�10�3for �g ' 0:5 while it vanishes at � ' 1 as is suggested in the IT literature [1℄. On the other hand, forp = 0:0990, our predi
ted threshold, it is maximized to zero at � ' 0, whi
h implies that this is the
orre
t threshold. (b): Comparison of the estimates of p
 between the IT and the 
urrent methods issummarized in a table. The estimates for the IT method are taken from [1℄. The numeri
al pre
isionis up to the last digit for the 
urrent method. Shannon's limit denotes the highest possible p
 for agiven 
ode rate.whi
h is identi
al to what has been obtained for the phase boundary of the ferro-paramagneti
transition along the Nishimori's temperature predi
ted by the existing repli
a analysis [7, 8℄.As p is redu
ed further, the position of the maximum �g moves to the right and ex
eeds� = 1 at another 
riti
al noise rate pb. This implies that below pb the limit �! +0 is governedby the frozen (RS) solution whi
h is identi
al to what is given by the 
onventional IT analysis(Fig. 1(
)). Sin
e this situation is realized only suÆ
iently below the threshold, the solutionis of no use for dire
t evaluation of p
, although it provides a lower bound.Finally, we examined the 
ase of K = 6 and C = 3 to demonstrate the a

ura
y of theestimated threshold. We numeri
ally evaluated E(�) of the 
ontinuous bran
h for p = 0:0915,a re
ent highly a

urate estimate of the error threshold for this parameter 
hoi
e [1℄ and forp = 0:0990, whi
h is the threshold predi
ted by the repli
a method [14, 8℄. The numeri
alresults are obtained by approximating �(�) and b�(�) using 106 dimensional ve
tors and iteratingthe saddle point equations until 
onvergen
e. The obtained results are shown in Fig. 2 (a); it
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ates max� E(�) ' 2:5�10�3 for p = 0:0915 while E(�) is maximized (to zero) at � ' 0 forp = 0:0990, suggesting a tighter estimate for the error threshold than those reported so far. A
omparison between the 
riti
al noise levels as obtained our 
urrent method and those withthe IT method, for other parameter 
hoi
es is summarized in Fig. 2 (b).In summary, we have investigated the performan
e of the typi
al set de
oding for ensemblesof Gallager's 
odes. We have shown that the dire
t evaluation of the average type II errorprobability over the ensemble be
omes possible employing the repli
a method. The link to theexisting IT analysis whi
h is based on the weight enumerator is also 
lari�ed. Although theweight enumerator does not play a 
ru
ial role for determination of the error threshold in the
urrent analysis, it still remains a key fa
tor for the error rate in low R regions. Its analysisfrom a view point of statisti
al physi
s is under way [13℄.***We a
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