We present an exactly solvable random-subcube model inspired by the structure
of hard constraint satisfaction and optimization problems. Our model reproduces
the structure of the solution space of the random k-satisfiability and
k-coloring problems, and undergoes the same phase transitions as these
problems. The comparison becomes quantitative in the large-k limit. Distance
properties, as well the x-satisfiability threshold, are studied. The model is
also generalized to define a continuous energy landscape useful for studying
several aspects of glassy dynamics.Comment: 21 pages, 4 figure