9 research outputs found

    Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status

    Get PDF
    Paget’s disease of bone (PDB) is characterized by focal increases in disorganized bone remodeling. This study aims to characterize PDB-associated changes in DNA methylation profiles in patients’ blood. Meta-analysis of data from the discovery and cross-validation set, each comprising 116 PDB cases and 130 controls, revealed significant differences in DNA methylation at 14 CpG sites, 4 CpG islands, and 6 gene-body regions. These loci, including two characterized as functional through expression quantitative trait-methylation analysis, were associated with functions related to osteoclast differentiation, mechanical loading, immune function, and viral infection. A multivariate classifier based on discovery samples was found to discriminate PDB cases and controls from the cross-validation with a sensitivity of 0.84, specificity of 0.81, and an area under curve of 92.8%. In conclusion, this study has shown for the first time that epigenetic factors contribute to the pathogenesis of PDB and may offer diagnostic markers for prediction of the disease

    Efficiency of GrowDex<sup>®</sup> nanofibrillar cellulosic hydrogel when generating homotypic and heterotypic 3D tumor spheroids

    No full text
    In recent times, homotypic and heterotypic 3D tumor spheroid (HTS) models have been receiving increasing attention and come to be widely employed in preclinical studies. The present study is focused on the generation of homotypic (A549 and MDA-MB-231, separately) and heterotypic (A549 + NIH/3T3; MDA-MB-231 + NIH/3T3) 3D tumor spheroids by using GrowDex® nanofibrillar cellulosic (NFC) hydrogel as the scaffold. Light microscopic observations and F-actin staining confirmed the formation of spheroids. The proliferation efficiency indicated an expansion of cell population and an increase in spheroid size over time. The distribution, interaction pattern and influence of fibroblasts on the epithelial cell types were observed in terms of the size and shape of the HTS against homo-spheroids. An interesting observation was that, with an increase in the size of HTSs, many more fibroblast cells were found to occupy the core region, which, perhaps, was due to the faster growth of tumor cells over normal cells. Thus, normal and tumor cells, especially with origins from two different species, can be cultured together in 3D format, and this can potentially enhance our knowledge of tumor microenvironments and cell-cell interaction. These spheroids could be used to improve microphysiological systems for drug discovery and to better understand the tumor microenvironment

    Expression of TGF-beta Signaling Regulator RBPMS (RNA-Binding Protein With Multiple Splicing) Is Regulated by IL-1beta and TGF-beta Superfamily Members, and Decreased in Aged and Osteoarthritic Cartilage

    No full text
    Item does not contain fulltextOBJECTIVE: RNA-binding protein with multiple splicing (RBPMS) has been shown to physically interact with Smads and enhance transforming growth factor-beta (TGF-beta)-mediated Smad2/3 transcriptional activity in mammalian cells. Objective of this study was to examine whether expression of RBPMS is regulated by interleukin-1beta (IL)-1beta and TGF-beta superfamily growth factors and whether expression of RBPMS is altered during aging and experimental osteoarthritis. METHODS: Expression of RBPMS protein was investigated in chondrocyte cell lines of murine (H4) and human (G6) origin using Western blot analysis. Regulation of RBPMS expression in H4 chondrocytes at mRNA level was done by reverse transcriptase-quantitative polymerase chain reaction. Furthermore, characterization of Smad signaling pathways regulating RBPMS expression was performed by blocking studies using small molecule inhibitors or by transfection studies with adenoviral vector constructs (constitutive-active ALK1 and constitutive-active ALK5). Expression of RBPMS in cartilage of different age groups of C57BL/6N mice (6 months and 20 months) and in a surgically induced osteoarthritis (OA) mouse model was analyzed using immunohistochemistry. RESULTS: RBPMS was shown to be expressed in chondrocytes and cartilage of murine, human, and bovine origin. TGF-beta inhibited RBPMS expression while BMP2 and IL-1beta increased its expression. TGF-beta-induced inhibition was blocked by ALK5 inhibitor. Overexpression of ca-ALK1 stimulated RBPMS expression. Moreover, RBPMS expression was found to be reduced with ageing and in OA pathogenesis. CONCLUSIONS: Expression of RBPMS in chondrocytes is regulated by TGF-beta superfamily members and IL-1beta, indicating a counter-regulatory mechanism. Expression of RBPMS, in cartilage and its reduction during ageing and OA might suggest its potential role in the maintenance of normal articular cartilage
    corecore