65 research outputs found

    Sublethal Doses of Anthrax Lethal Toxin on the Suppression of Macrophage Phagocytosis

    Get PDF
    BACKGROUND: Lethal toxin (LT), the major virulence factor produced by Bacillus anthracis, has been shown to suppress the immune system, which is beneficial to the establishment of B. anthracis infections. It has been suggested that the suppression of MEK/MAPK signaling pathways of leukocytes contributes to LT-mediated immunosuppressive effects. However, the involvement of MAPK independent pathways has not been clearly elucidated; nor has the crucial role played by LT in the early stages of infection. Determining whether LT exerts any pathological effects before being enriched to an MEK inhibitory level is an important next step in the furtherance of this field. METHODOLOGY/PRINCIPAL FINDINGS: Using a cell culture model, we determined that low doses of LT inhibited phagocytosis of macrophages, without influencing MAPK pathways. Consistent low doses of LT significantly suppressed bacterial clearance and enhanced the mortality of mice with bacteremia, without suppressing the MEK1 of splenic and peripheral blood mononuclear cells. CONCLUSION/SIGNIFICANCE: These results suggest that LT suppresses the phagocytes in a dose range lower than that required to suppress MEK1 in the early stages of infection

    Role of Visible Light-Activated Photocatalyst on the Reduction of Anthrax Spore-Induced Mortality in Mice

    Get PDF
    BACKGROUND: Photocatalysis of titanium dioxide (TiO(2)) substrates is primarily induced by ultraviolet light irradiation. Anion-doped TiO(2) substrates were shown to exhibit photocatalytic activities under visible-light illumination, relative environmentally-friendly materials. Their anti-spore activity against Bacillus anthracis, however, remains to be investigated. We evaluated these visible-light activated photocatalysts on the reduction of anthrax spore-induced pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Standard plating method was used to determine the inactivation of anthrax spore by visible light-induced photocatalysis. Mouse models were further employed to investigate the suppressive effects of the photocatalysis on anthrax toxin- and spore-mediated mortality. We found that anti-spore activities of visible light illuminated nitrogen- or carbon-doped titania thin films significantly reduced viability of anthrax spores. Even though the spore-killing efficiency is only approximately 25%, our data indicate that spores from photocatalyzed groups but not untreated groups have a less survival rate after macrophage clearance. In addition, the photocatalysis could directly inactivate lethal toxin, the major virulence factor of B. anthracis. In agreement with these results, we found that the photocatalyzed spores have tenfold less potency to induce mortality in mice. These data suggest that the photocatalysis might injury the spores through inactivating spore components. CONCLUSION/SIGNIFICANCE: Photocatalysis induced injuries of the spores might be more important than direct killing of spores to reduce pathogenicity in the host

    A QM/MM study of the nature of the entatic state in plastocyanin

    Get PDF
    Plastocyanin is a copper containing protein that is involved in the electron transfer process in photosynthetic organisms. The active site of plastocyanin is described as an entatic state whereby its structure represents a compromise between the structures favored by the oxidized and reduced forms. In this study, the nature of the entatic state is investigated through density functional theory-based hybrid quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations. The strain energy is computed to be 12.8 kcal/mol and 14.5 kcal/mol for the oxidized and reduced forms of the protein, indicating that the active site has an intermediate structure. It is shown that the energy gap between the oxidized and reduced forms varies significantly with the fluctuations in the structure of the active site at room temperature. An accurate determination of the reorganization energy requires averaging over conformation and a large region of the protein around the active site to be treated at the quantum mechanical level

    Descope of the ALIA mission

    Get PDF
    The present work reports on a feasibility study commissioned by the Chinese Academy of Sciences of China to explore various possible mission options to detect gravitational waves in space alternative to that of the eLISA/LISA mission concept. Based on the relative merits assigned to science and technological viability, a few representative mission options descoped from the ALIA mission are considered. A semi-analytic Monte Carlo simulation is carried out to understand the cosmic black hole merger histories starting from intermediate mass black holes at high redshift as well as the possible scientific merits of the mission options considered in probing the light seed black holes and their coevolution with galaxies in early Universe. The study indicates that, by choosing the armlength of the interferometer to be three million kilometers and shifting the sensitivity floor to around one-hundredth Hz, together with a very moderate improvement on the position noise budget, there are certain mission options capable of exploring light seed, intermediate mass black hole binaries at high redshift that are not readily accessible to eLISA/LISA, and yet the technological requirements seem to within reach in the next few decades for China

    The Use of Nanoscale Visible Light-Responsive Photocatalyst TiO2-Pt for the Elimination of Soil-Borne Pathogens

    Get PDF
    Exposure to the soil-borne pathogens Burkholderia pseudomallei and Burkholderia cenocepacia can lead to severe infections and even mortality. These pathogens exhibit a high resistance to antibiotic treatments. In addition, no licensed vaccine is currently available. A nanoscale platinum-containing titania photocatalyst (TiO2-Pt) has been shown to have a superior visible light-responsive photocatalytic ability to degrade chemical contaminants like nitrogen oxides. The antibacterial activity of the catalyst and its potential use in soil pathogen control were evaluated. Using the plating method, we found that TiO2-Pt exerts superior antibacterial performance against Escherichia coli compared to other commercially available and laboratory prepared ultraviolet/visible light-responsive titania photocatalysts. TiO2-Pt-mediated photocatalysis also affectively eliminates the soil-borne bacteria B. pseudomallei and B. cenocepacia. An air pouch infection mouse model further revealed that TiO2-Pt-mediated photocatalysis could reduce the pathogenicity of both strains of bacteria. Unexpectedly, water containing up to 10% w/v dissolved soil particles did not reduce the antibacterial potency of TiO2-Pt, suggesting that the TiO2-Pt photocatalyst is suitable for use in soil-contaminated environments. The TiO2-Pt photocatalyst exerted superior antibacterial activity against a broad spectrum of human pathogens, including B. pseudomallei and B. cenocepacia. Soil particles (<10% w/v) did not significantly reduce the antibacterial activity of TiO2-Pt in water. These findings suggest that the TiO2-Pt photocatalyst may have potential applications in the development of bactericides for soil-borne pathogens

    Estimation of Canonical Regression Weights and Correlations by Means of Simulated Data

    No full text
    97 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1975.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD

    Antibacterial Properties of Visible-Light-Responsive Carbon-Containing Titanium Dioxide Photocatalytic Nanoparticles against Anthrax

    No full text
    The bactericidal activity of conventional titanium dioxide (TiO2) photocatalyst is effective only on irradiation by ultraviolet light, which restricts the applications of TiO2 for use in living environments. Recently, carbon-containing TiO2 nanoparticles [TiO2(C) NP] were found to be a visible-light-responsive photocatalyst (VLRP), which displayed significantly enhanced antibacterial properties under visible light illumination. However, whether TiO2(C) NPs exert antibacterial properties against Bacillus anthracis remains elusive. Here, we evaluated these VLRP NPs in the reduction of anthrax-induced pathogenesis. Bacteria-killing experiments indicated that a significantly higher proportion (40%–60%) of all tested Bacillus species, including B. subtilis, B. cereus, B. thuringiensis, and B. anthracis, were considerably eliminated by TiO2(C) NPs. Toxin inactivation analysis further suggested that the TiO2(C) NPs efficiently detoxify approximately 90% of tested anthrax lethal toxin, a major virulence factor of anthrax. Notably, macrophage clearance experiments further suggested that, even under suboptimal conditions without considerable bacterial killing, the TiO2(C) NP-mediated photocatalysis still exhibited antibacterial properties through the reduction of bacterial resistance against macrophage killing. Our results collectively suggested that TiO2(C) NP is a conceptually feasible anti-anthrax material, and the relevant technologies described herein may be useful in the development of new strategies against anthrax
    • …
    corecore