50 research outputs found

    A 5.5-year robotic optical monitoring of Q0957+561: substructure in a non-local cD galaxy

    Full text link
    New light curves of the gravitationally lensed double quasar Q0957+561 in the gr bands during 2008-2010 include densely sampled, sharp intrinsic fluctuations with unprecedentedly high signal-to-noise ratio. These relatively violent flux variations allow us to very accurately measure the g-band and r-band time delays between the two quasar images A and B. Using correlation functions, we obtain that the two time delays are inconsistent with each other at the 2sigma level, with the r-band delay exceeding the 417-day delay in the g band by about 3 days. We also studied the long-term evolution of the delay-corrected flux ratio B/A from our homogeneous two-band monitoring with the Liverpool Robotic Telescope between 2005 and 2010. This ratio B/A slightly increases in periods of violent activity, which seems to be correlated with the flux level in these periods. The presence of the previously reported dense cloud within the cD lensing galaxy, along the line of sight to the A image, could account for the observed time delay and flux ratio anomalies.Comment: 8 pages, 6 figures, 4 tables, to appear in Astronomy and Astrophysic

    New two-colour light curves of Q0957+561: time delays and the origin of intrinsic variations

    Full text link
    We extend the gr-band time coverage of the gravitationally lensed double quasar Q0957+561. New gr light curves permit us to detect significant intrinsic fluctuations, to determine new time delays, and thus to gain perspective on the mechanism of intrinsic variability in Q0957+561. We use new optical frames of Q0957+561 in the g and r passbands from January 2005 to July 2007. These frames are part of an ongoing long-term monitoring with the Liverpool robotic telescope. We also introduce two photometric pipelines that are applied to the new gr frames of Q0957+561. The transformation pipeline incorporates zero-point, colour, and inhomogeneity corrections to the instrumental magnitudes, so final photometry to the 1-2% level is achieved for both quasar components. The two-colour final records are then used to measure time delays. The gr light curves of Q0957+561 show several prominent events and gradients, and some of them (in the g band) lead to a time delay between components of 417 +/- 2 d (1 sigma). We do not find evidence of extrinsic variability in the light curves of Q0957+561. We also explore the possibility of a delay between a large event in the g band and the corresponding event in the r band. The gr cross-correlation reveals a time lag of 4.0 +/- 2.0 d (1 sigma; the g-band event is leading) that confirms a previous claim of the existence of a delay between the g and r band in this lensed quasar. The time delays (between quasar components and between optical bands) from the new records and previous ones in similar bands indicate that most observed variations in Q0957+561 (amplitudes of about 100 mmag and timescales of about 100 d) are very probably due to reverberation within the gas disc around the supermassive black hole.Comment: 13 pages, 9 figures. Accepted for publication in A&

    Continuum reverberation mapping in a z = 1.41 radio-loud quasar

    Full text link
    Q0957+561 was the first discovered gravitationally lensed quasar. The mirage shows two images of a radio-loud quasar at redshift z = 1.41. The time lag between these two images is well established around one year. We detected a very prominent variation in the optical brightness of Q0957+561A at the beginning of 2009, which allowed us to predict the presence of significant intrinsic variations in multi-wavelength light curves of Q0957+561B over the first semester of 2010. To study the predicted brightness fluctuations of Q0957+561B, we conducted an X-ray, NUV, optical and NIR monitoring campaign using both ground-based and space-based facilities. The continuum NUV-optical light curves revealed evidence of a centrally irradiated, standard accretion disk. In this paper, we focus on the radial structure of the standard accretion disk and the nature of the central irradiating source in the distant radio-loud active galactic nucleus (AGN).Comment: 6 pages, 5 figures, Proceedings of The Central Kiloparsec in Galactic Nuclei-AHAR2011 Conference, to appear in Journal of Physics: Conference Series (2012

    Structure function of the UV variability of Q0957+561

    Full text link
    We present a detailed structure function analysis of the UV variability of Q0957+561. From new optical observations, we constructed normalized structure functions of the quasar luminosity at restframe wavelengths of 2100 and 2600 \AA. Old optical records also allow the structure function to be obtained at 2100 \AA, but 10 years ago in the observer's frame. These three structure functions are then compared to predictions of both simple and relatively sophisticated (incorporating two independent variable components) Poissonian models. We do not find clear evidence of a chromatic mechanism of variability. From the recent data, 100-d time-symmetric and 170-d time-asymmetric flares are produced at both restframe wavelengths. Taking into account measurements of time delays and the existence of an EUV/radio jet, reverberation is probably the main mechanism of variability. Thus, two types of EUV/X-ray fluctuations would be generated within or close to the jet and later reprocessed by the disc gas in the two emission rings. The 100-d time-symmetric shots are also responsible for most of the 2100 \AA variability detected in the old experiment. However, there is no evidence of asymmetric shots in the old UV variability. If reverberation is the involved mechanism of variability, this could mean an intermittent production of high-energy asymmetric fluctuations. The old records are also consistent with the presence of very short-lifetime (10 d) symmetric flares, which may represent additional evidence of time evolution. We also discuss the quasar structure that emerges from the variability scenario.Comment: 7 pages, 4 figures. Accepted for publication in A&A (based on the brightness records at http://arxiv.org/abs/0810.4619

    Gravitational Lens System PS J0147+4630 (Andromeda's Parachute): Main Lensing Galaxy and Optical Variability of the Quasar Images

    Get PDF
    Because follow–up observations of quadruple gravitational lens systems are of extraordinary importance for astrophysics and cosmology, we present single-epoch optical spectra and r-band light curves of PS J0147+4630. This recently discovered system mainly consists of four images ABCD of a background quasar around a foreground galaxy G that acts as a gravitational lens. First, we use long-slit spectroscopic data in the Gemini Observatory Archive and a multi-component fittting to accurately resolve the spectra of A, D, and G. The spectral profile of G resembles that of an early-type galaxy at a redshift of 0.678±0.001, which is about 20% higher than the previous estimate. Additionally, the stellar velocity dispersion is measured to ∼5% precision. Second, our early r-band monitoring with the Liverpool Telescope leads to accurate light curves of the four quasar images. Adopting time delays predicted by the lens model, the new lens redshift, and a standard cosmology, we report the detection of microlensing variations in C and D as large as ∼0.1 mag on timescales of a few hundred days. We also estimate an actual delay between A and B of a few days (B is leading), which demonstrates the big potential of optical monitoring campaigns of PS J0147+4630.This research has been conducted in the framework of the Gravitational LENses and DArk MAtter (GLENDAMA) project, which is supported by the MINECO/AEI/FEDER-UE grant AYA2017-89815-P and the University of Cantabri

    Gravitationally lensed QSOs in the ISSIS/WSO-UV era

    Full text link
    Gravitationally lensed QSOs (GLQs) at redshift z = 1-2 play a key role in understanding the cosmic evolution of the innermost parts of active galaxies (black holes, accretion disks, coronas and internal jets), as well as the structure of galaxies at intermediate redshifts. With respect to studies of normal QSOs, GLQ programmes have several advantages. For example, a monitoring of GLQs may lead to unambiguous detections of intrinsic and extrinsic variations. Both kinds of variations can be used to discuss central engines in distant QSOs, and mass distributions and compositions of lensing galaxies. In this context, UV data are of particular interest, since they correspond to emissions from the immediate surroundings of the supermassive black hole. We describe some observation strategies to analyse optically bright GLQs at z of about 1.5, using ISSIS (CfS) on board World Space Observatory-Ultraviolet.Comment: 7 pages, 4 figures, Accepted for publication in Astrophysics & Space Scienc

    Asymptotic Expansions and Amplification of a Gravitational Lens Near a Fold Caustic

    Full text link
    We propose two methods that enable us to obtain approximate solutions of the lens equation near a fold caustic with an arbitrary degree of accuracy. We obtain "post-linear" corrections to the well-known formula in the linear caustic approximation for the total amplification of two critical images of a point source. In this case, in order to obtain the nontrivial corrections we had to go beyond the approximation orders earlier used by Keeton et al. and to take into account the Taylor expansion of the lens equation near caustic up to the fourth order. Corresponding analytical expressions are derived for the amplification in cases of the Gaussian and power-law extended source models; the amplifications depend on three additional fitting parameters. Conditions of neglecting the correction terms are analysed. The modified formula for the amplification is applied to the fitting of light curves of the Q2237+0305 gravitational lens system in a vicinity of the high amplification events (HAEs). We show that the introduction of some "post-linear" corrections reduces chi^2 by 30% in the case of known HAE on the light curve of image C (1999). These corrections can be important for a precise comparison of different source models with regard for observational data. Key words: gravitational lensing: micro - quasars: individual (Q2237+0305) - gravitational lensing: strong - methods: analyticalComment: 16 pages, 3 figure
    corecore