148 research outputs found

    Nitrogen cycle disruption through the application of de-icing salts on upland highways

    Get PDF
    It is hypothesized that episodic introductions of road salt severely disrupt the soil nitrogen cycle at a range of spatial and temporal scales. A field-scale study has confirmed impacts on the nitrogen cycle in soil, soil solution and river samples. There is evidence that ammonium-N retention on cation exchange sites has been reduced by the presence of sodium ions, and that ammonium-N has been flushed from the exchange sites. Increases in soil pH have been caused in naturally acidic uplands. These have enhanced mineralization of organic-N, especially nitrification, leading to a reduction in the mineralizable-N pool of roadside soils. There is evidence to support the hypothesis that organic matter content has been lowered over decades either through desorption or dispersal processes. Multiple drivers are identified that contribute to the disruption of nitrogen cycling processes, but their relative importance is difficult to quantify unequivocally. The influence of road salt on soil and soil solution declines with distance from the highway, but impacts on water chemistry in a local stream are still strongly evident at some distance from the road

    Attachment and Proliferation of Osteoblasts on Lithium-Hydroxyapatite Composites

    Get PDF
    The biocompatibility and bioactivity properties of hydroxyapatites (HAs) modified through lithium addition were investigated. Hydroxyapatites obtained from bovine bone were mixed with lithium carbonate (Li), in the proportions of 0.25, 0.50, 1.00, and 2.00% wt, and sintered at 900°, 1000°, 1100°, 1200°, and 1300°C, creating LiHA samples. The osteoblast culture behavior was assessed in the presence of these LiHA compositions. The cellular interactions were analyzed by evaluating the viability and cellular proliferation, ALP production and collagen secretion. The cytotoxic potential was investigated through measurement of apoptosis and necrosis induction. The process of cellular attachment in the presence of the product of dissolution of LiHA, was evaluated trough fluorescence analysis. The physical characteristics of these materials and their cellular interactions were examined with SEM and EDS. The results of this study indicate that the LiHA ceramics are biocompatible and have variable bioactivities, which can be tailored by different combinations of the concentration of lithium carbonate and the sintering temperature. Our findings suggest that LiHA 0.25% wt, sintered at 1300°C, combines the necessary physical and structural qualities with favorable biocompatibility characteristics, achieving a bioactivity that seems to be adequate for use as a bone implant material

    Complex conductivity of soils

    Get PDF
    The complex conductivity of soils remains poorly known despite the growing importance of this method in hydrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including four peat samples) and one clean sand in the frequency range 0.1 Hz to 45 kHz. The soil samples are saturated with six different NaCl brines with conductivities (0.031, 0.53, 1.15, 5.7, 14.7, and 22 S m21, NaCl, 258C) in order to determine their intrinsic formation factor and surface conductivity. This data set is used to test the predictions of the dynamic Stern polarization model of porous media in terms of relationship between the quadrature conductivity and the surface conductivity. We also investigate the relationship between the normalized chargeability (the difference of in-phase conductivity between two frequencies) and the quadrature conductivity at the geometric mean frequency. This data set confirms the relationships between the surface conductivity, the quadrature conductivity, and the normalized chargeability. The normalized chargeability depends linearly on the cation exchange capacity and specific surface area while the chargeability shows no dependence on these parameters. These new data and the dynamic Stern layer polarization model are observed to be mutually consistent. Traditionally, in hydrogeophysics, surface conductivity is neglected in the analysis of resistivity data. The relationships we have developed can be used in field conditions to avoid neglecting surface conductivity in the interpretation of DC resistivity tomograms. We also investigate the effects of temperature and saturation and, here again, the dynamic Stern layer predictions and the experimental observations are mutually consistent

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council

    Long-term road salting effects on dispersion of organic matter from roadside soils into drainage water

    No full text
    Sodium chloride has been utilised for decades to maintain road safety in winter and some of its detrimental impacts have been well-documented. However, research on the organic fraction of roadside soils has concentrated upon short-term salt-effects. We hypothesise that decades of past leaching and enhanced mineralisation of organic matter have reduced the concentrations of dissolved organic carbon (DOC) flushes currently occurring. We have examined the effects of salt concentration on organic matter mobilisation in soils that have already experienced varying degrees of exposure to road salting in the field over decades. Applications of salt at concentrations experienced in the field have been simulated to quantify the extent that DOC and dissolved organic nitrogen (DON) are still being mobilised for three prior salt-impact scenarios. A balance occurs between the effects on organic matter of long-term soil pH increase (due to continued cation exchange during salt exposure) which enhances its solubility and organic matter mineralisation, short-term pH suppression (due to the mobile anion effect in soil solution) which reduces its solubility, and short- and long-term sodium-induced dispersion. This now determines the influence of road salt on organic matter leaching from roadside soils and into associated drainage waters
    • …
    corecore