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Abstract. The complex conductivity of soil remains poorly known despite the growing  

importance of this method in hyrogeophysics. In order to fill this gap of knowledge, we  

investigate the complex conductivity of 71 soils samples (including 4 peat samples) and one  

clean sand in the frequency range 0.1 Hertz to 45 kHz. The soil samples are saturated with 6  

different NaCl brines with  conductivities (0.031, 0.53, 1.15, 5.7, 14.7, and 22 S m-1, NaCl,  

25°C) in order to determine their intrinsic formation factor and surface conductivity. This  

dataset is used to test the predictions of the dynamic Stern polarization model of porous media  

in terms of relationship between the quadrature conductivity and the surface conductivity. We  

also investigate the relationship between the normalized chargeability (the difference of in- 

phase conductivity between two frequencies) and the quadrature conductivity at the geometric  

mean frequency. This dataset confirms the relationships between the surface conductivity, the  

quadrature conductivity, and the normalized chargeability. The normalized chargeability  

depends linearly on the cation exchange capacity and specific surface area while the  

chargeability shows no dependence on these parameters. These new data and the dynamic  

Stern layer polarization model are observed to be mutually consistent. Traditionally, in  

hydrogeophysics, surface conductivity is neglected in the analysis of resistivity data. The  

relationships we have developed can be used in field conditions to avoid neglecting surface  

conductivity in the interpretation of DC resistivity tomograms. We also investigate the effects  

of temperature and saturation and, here again, the dynamic Stern layer predictions and the  

experimental observations are mutually consistent.   
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1. Introduction 

 Induced polarization (or complex conductivity) tomography is a geophysical imaging 

technique based on the study of the low-frequency (< 10 kHz) polarization processes 

occurring in porous media. It extends the classical Direct Current (DC) resistivity method, 

which has been broadly used in hydrogeophysics in the last two decades (e.g., Johnson et al. 

[2010]; Binley et al. [2015]). In spectral induced polarization, the frequency dependence of 

both electrical resistivity and the phase shift between the electrical field and the current are 

independently measured and analyzed over a range of frequencies (e.g., Kemna et al. [2012]). 

The amplitude of resistivity (impedance) and the phase can be recasted into a complex 

conductivity. Under an applied (primary) electrical field, its in-phase (real) component 

characterizes the electromigration of the charge carriers while its quadrature (out-of-phase, 

imaginary) component is used to describe local accumulations of electrical charge carriers 

resulting in the polarization of the porous materials [Vinegar and Waxman, 1984]. In 

siliciclastic materials, their ability to store reversibly electrical charges is related to the 

polarization of the electrical double layer surrounding the mineral grains and possibly some 

membrane polarization phenomena [Vinegar and Waxman, 1984].  

 Induced polarization has many applications in hydrogeophysics including inference of 

hydraulic properties (Binley et al. [2005]; Weller et al. [2010], Joseph et al. [2015]; Nordsiek 

et al. [2015]), facies discrimination [Revil et al., 2013], the detection of contaminants in soils 

(e.g., Sogade et al. [2006], Flores Orozco et al. [2012], Schwartz and Furman [2012], 

Schmutz et al. [2012], Chen et al. [2013]), and the detection of cracks (e.g., Okay et al. 

[2013]). Induced polarization has shown also a unique capability to monitor non-intrusively 

sorption processes in the electrical double layer (Vaudelet et al. [2011a, b], Hao et al. [2016]) 

and precipitation of metallic particles during redox-controlled reactions (e.g., Mewafy et al. 

This article is protected by copyright. All rights reserved.
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[2013], Abdulsamad [2017]). Induced polarization has also become a tool that can be used to  

study the cryosphere in shallow formations [Grimm and Stillman, 2015].   

In the growing literature dedicated to hydrogeophysics and for the study of the critical  

zone, the formation factor is often erroneously defined as the pore water conductivity divided  

by the conductivity of the porous material. With such a definition, the (apparent) formation  

factor is not a textural parameter of porous media but would depend on the salinity or total  

dissolved content (TDS) of the pore water. Surface conductivity in the electrical double layer  

surrounding the mineral grains needs to be accounted for (e.g., Waxman and Smits [1968],  

Vinegar and Waxman [1984], Okay et al. [2014]). Surface conductivity is often neglected in  

hydrogeophysics as being an important contributor to the overall electrical conductivity of  

siliciclastic materials while its role has been recognized for many decades in soil sciences  

(e.g., Shainberg et al. [1980], Friedman [2005] and references therein) and in well logging  

analysis (e.g., Waxman and Smits [1968]). This practice of neglecting surface conductivity is  

however erroneous especially in freshwater environments for which the surface conductivity  

can easily dominate the conductivity of the porous materials. For instance Revil et al. [2014b]  

showed that the (apparent) formation factor can strongly underestimate the true (intrinsic)  

formation factor even for a perfectly clean (i.e., clay-free) sandstone like the Fontainebleau  

sandstone. This implies in turn that a growing number of publications in hydrogeophysics are  

not correct in their interpretation of resistivity tomograms. For various applications in  

hydrogeophysics, we need to obtain an intrinsic formation factor corrected for surface  

conductivity. In laboratory conditions, the (intrinsic) formation factor is traditionally obtained  

by measuring the electrical conductivity of a core samples at different brine conductivities  

[e.g., Waxman and Smits, 1968; Vinegar and Waxman, 1984]. Revil [2013b] and Weller et al.  

[2013] developed new relationships between the quadrature and surface conductivities and  

This article is protected by copyright. All rights reserved.
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following Weller et al. [2013], this relationship can be used to determine the intrinsic  

formation factor at a single brine conductivity.   

While much work has been done in describing the electrical conductivity of soils (see  

a review in Friedman [2005]), few publications have targeted the complex conductivity of  

these porous materials (see Schwartz and Furman [2012], Nordsiek et al. [2015] for limited  

investigations with few core samples). In the present paper, we test the dynamic Stern layer  

model developed by Revil and collaborators to describe the complex conductivity of brine- 

saturated clayey soils. Then, we develop the first extensive database of complex conductivity  

of soil samples with 71 samples analyzed plus one clean silica sand. Our goal is to test the  

relationships between the surface and quadrature conductivities as well with the normalized  

chargeability. We will also discuss the dependence of the normalized chargeability with the  

cation exchange capacity and specific surface area, two very important properties of soils in  

agriculture (e.g., Saidi [2012]).    

  

2. Dynamic Stern layer polarization model  

2.1. Properties of the complex conductivity  

 In order to build an appropriate complex conductivity function, few elements need to  

be taken into account. Minerals in soils have an intrinsic charge on their surface and are  

coated by an electrical double layer comprising the Stern and diffuse layers (Figure 1). This  

double layer is responsible for both an excess conduction called surface conductivity (Figure  

1) and the polarization of the pore space and the grains (Figure 2).   

The frequency dependence of the real and imaginary parts of the complex conductivity  

corresponding to induced polarization phenomena, i.e., '  and " , should obey the Kramers- 

Kronig relationships [Kronig, 1926; Kramers, 1927; Kronig, 1942], which are based on the  

causality principle. An interesting account of the early history of these relationships can be  

This article is protected by copyright. All rights reserved.
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found in Bohren [2010]. In addition, the value of the in-phase conductivity should be bounded  

by the value of the DC conductivity 0 (at zero frequency) and the value of a high frequency  

conductivity   . By high frequency, we mean a frequency close to the MHz (see discussion  

in Vinegar and Waxman [1984]).   

 The quadrature conductivity "  should go to zero both in DC conditions (zero  

frequency) and at very high frequencies (i.e., above the MHz). Experiments show however  

that at high frequencies, the magnitude of the quadrature conductivity keeps increasing  

because of the superposition with another polarization mechanism, namely the Maxwell  

Wagner polarization [Revil, 2013a] plus dielectric polarization phenomena. In this case, the  

effective quadrature conductivity should be written as " ( ) "eff      where   denotes  

actually the low-frequency permittivity of the Maxwell Wagner polarization or the dielectric  

permittivity in absence of Maxwell Wagner polarization.   

 Note that because the low and high frequency limits of " are equal to zero (e..g.,  

Vinegar and Waxman [1984]), the bounds 0 and    are also the bounds for the magnitude of  

the complex conductivity defined by 2 2 1/2( ' " )    . The conductivity    is the  

instantaneous conductivity of a material, i.e., the conductivity experienced in Ohm’s law right  

after the application of an electrical field. At the opposite, the conductivity 0 is the DC  

conductivity obtained once all the polarization phenomena have fully established at all the  

polarizable length scales of the porous material. In these conditions, some of charge carriers  

(of the inner part of the electrical double layer) are blocked at the end of these polarization  

length scales (an example is shown in Figure 2 for a spherical grain). Another way to see this  

behavior is that at low frequencies, the polarization creates an electrical field (or a current  

density) that opposes the applied (primary) electrical field (or primary current density). This  

polarization phenomenon is however not dielectric per se. The reduction of the total electrical  

This article is protected by copyright. All rights reserved.
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field at low frequencies is responsible for the fact that 0   ( 0   in absence of  

polarization mechanism). We can also write 0 (1 )M   , i.e., the DC conductivity is the  

instantaneous conductivity minus the effect of polarization described by the chargeability M  

(dimensionless).   

 At this point, we have said nothing about the physical mechanism of low frequency  

polarization. In Figure 2, we focus on the polarization of the Stern layer. Figure 2 illustrates  

that all the charge carriers are mobile just after the application of an electrical field (at t = 0+)  

and that some of the charge carriers are blocked at the edge of the grains for a very long time ( 

t  ). Note that physically, the real part (in phase component) of the conductivity '   

refers to electromigration processes, i.e., the transport of the charge carriers driven by the  

electrical field, both in the pore water and along the electrical double layer coating the surface  

of the grains. The imaginary (quadrature) component "  refers to (reversible) charge  

accumulation like in a capacitor and is associated with the polarization of the Stern layer.   

 In Figure 2, the relaxation time of the problem   corresponds to the relaxation time of  

the problem. Once the primary electrical field or current is removed, the process of  

polarization corresponds to the diffusion of the accumulated charge carriers to their  

equilibrium situation corresponding to Figure 2a. This process is a classical electrochemical  

membrane polarization/potential mechanism similar to the well-established self-potential  

problem or concentration polarization (see Mao and Revil [2016] for a discussion on this  

topic).   

 From Figure 2, it is obvious that the distribution of the polarization length scales  

would correspond to the grain size distribution, perhaps in some cases to a pore size  

distribution, both being interrelated in granular porous media. We denote this distribution  

( )h  . The complex conductivity would result from the superposition of spectra associated  

with the polarization of the individual length scales. In doing such a convolution, the right  

This article is protected by copyright. All rights reserved.
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kernel needs to be known. Usually in geophysics, many researchers use a Debye function as  

kernel. For the reasons discussed in details in Revil et al. [2014a], we believe that the correct  

kernel for porous media is close to a Warburg function (i.e., a Cole Cole conductivity  

function, Cole and Cole [1941], with a Cole Cole exponent of ½ while the Debye function  

would corresponds to a Cole Cole function with an exponent of 1). Physically, this means that  

the polarization of the Stern layer is not equivalent to a perfect capacitance (which would  

correspond to a Debye transfer function for the impedance) but to a “leaking” capacitance due  

to sorption/desorption of the counterions during the polarization process.   

  

2.2. Complex conductivity model  

In the following, a harmonic external electrical field of the form 0 exp( )i t E E  is  

applied to the porous material. In the realm of the dynamic Stern layer model, the complex  

conductivity of a porous granular material without metallic grains is given by [Revil, 2013a,  

b; Revil et al., 2014a]    

  

 
1/2

0

( )
*( ) 1

1

h
M d i

i


    





 

 
   

 
 ,    (1)  

where  denotes the angular frequency (rad s-1),   denotes the high frequency permittivity  

(in F m-1 = A s V-1m-1 actually the low frequency part of the Maxwell Wagner polarization  

and the dielectric constant of the material),   is a time constant (also called a relaxation time  

since corresponding to a diffusion process as discussed above), 0( ) /M       is the  

dimensionless chargeability, 0 and    denoting the DC (=0) and high-frequency electrical  

conductivities (in S m-1 = A V-1m-1), respectively, and ( )h   denotes a (normalized)  

probability density for distribution of the time constants of the material. Equation (1) satisfies  

all the criteria described in Section 2.1. This equation can be sketched with the equivalent  

This article is protected by copyright. All rights reserved.
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circuit shown in Figure 3 or the simplified circuit shown in Figure 4 (see also the constant  

phase model described in Appendix A).   

We define a normalized chargeability as 0nM M      , i.e., defined as the  

difference between the high-frequency conductivity and the low-frequency (DC) conductivity.  

The introduction of such a normalized chargeability, with units in S m-1, may seem  

inappropriate to some geophysicists that are experienced with the use of the chargeability  

(which is dimensionless). In hydrogeophysics, chargeability is commonly normalized by  

resistivity to remove in order to remove the fingerprint of resistivity on the inverted  

chargeability tomograms (see discussions in Slater and Glaser [2003] and Mansoor and  

Slater [2007]). In addition, according to the dynamic Stern layer model, nM  is proportional to  

the cation exchange capacity of the material as discussed by Mao et al. [2016], and therefore  

to the clay content. This is not the case with the chargeability itself as discussed at the end of  

this paper. However, in the presence of metallic particles (e.g., pyrite, magnetite, slag), the  

unitless chargeability remains the key parameters to plot since it is directly related to the  

volume content of metallic particles.   

The high and low frequency conductivities can be obtained through a volume  

averaging method as underlined by Revil [2013a]. In the present paper, the relationships for  

the low and high frequency electrical conductivity are given by what we call below the linear  

conductivity model. For materials characterized by high porosities, the expressions obtained  

by Revil [2013a] are  

0 ( )

1 1
(1 )CECw g f

F F
  




 
   

 
,     (2)  

( ) ( )

1 1
(1 ) CECS

w g f f
F F

   


  

 
       

 
,.   (3)  

where w  (in S m-1) denotes the pore water conductivity, F (dimensionless) the intrinsic  

formation factor, f (dimensionless) denotes the partition coefficient (fraction of counterions in  

This article is protected by copyright. All rights reserved.
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the Stern layer versus the entire double layer), 𝜌𝑔 is the grain density (in kg m-3, typically g =  

2650 kg m-3 for sedimentary rocks), and CEC is the cation exchange capacity (in C kg-1). The  

values of the mobility of ions in diffuse layer of sedimentary rocks is the same as in the bulk  

pore water with 𝛽(+)(Na+, 25°C) = 5.2 × 10-8 m2s-1V-1. Finally 
( )

S 
 describes the mobility of  

the counterions in the Stern layer which is expected to be equal or small than the mobility of  

the same cations in the diffuse layer. Equations (2) and (3) connect the conductivity (e.g.,  

measured in the field using galvanometric or induction-based electromagnetic techniques), the  

conductivity of the pore water w , the (intrinsic) formation factor F, the porosity  , and the  

surface conductivity due to electrical conductivity associated mostly with clay minerals (see  

Figures 1 to 3). From equation (2) and (3), it is easy to show that the chargeability is expected  

to be a strong function of the pore water conductivity. The effect of pore connectivity and  

grain shape are encapsulated into the definition of the formation factor (Sen et al. [1981] and  

Bernabé et al. [2011]). They are likely to influence the relaxation times as well. Note that  

equations (2) and (3) are strictly valid only at high salinity for which the local electrical field  

is dominated by the distribution of the bulk conductances (e.g., Johnson et al. [1986],  

Bernabé and Revil [1995]). The high salinity domain, in this context, is not a domain for  

which surface conductivity is negligible but a domain for which the surface conductivity is  

lower than the bulk conductivity.   

 For completeness, and in the context of the dynamic Stern layer model, each time  

constant   of the distribution ( )h   is associated with a pore size or grain size r (see  

discussions in Revil and Florsch [2010] and Revil et al. [2012]) according to  

2

(+)2 S

r

D
  ,      (4)   

where 
(+)

SD  denotes the diffusion coefficient of the counterions in the Stern layer (expressed in  

m2s-1). Note that for soils, as opposed to consolidated rocks, referring to the grains is probably  
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more realistic than referring to pores. The value of this diffusion coefficient 
(+)

SD  should relate  

to the mobility of the counterions in the Stern layer, ( )

S  , by the Nernst-Einstein relationship  

(+) (+) (+)

S S

bD k T / q  , where T denotes the absolute temperature (in K), bk  denotes the  

Boltzmann constant (1.3806× 10-23 m2 kg s-2 K-1), 
(+)q  is the charge of the counterions in the  

Stern layer coating the surface of the grains (
(+)q = e where e is the elementary charge for  

Na+). Therefore, according to equations (4), the probability density ( )h   can be transformed  

into a grain size (or pore size) probability density or (normalized) distribution, which would  

control in turn the transition between low and high frequencies in equation (1). Note that if  

the soil has a fractal nature for instance in terms of grain size distribution (e.g., Hyslip and  

Vallejo [1997]; Ahmadi et al. [2011]), we can expect the complex conductivity to be  

characterized a very broad distribution of relaxation times so that the phase may appear rather  

flat at least over few decades in frequency [Vinegar and Waxman, 1984]. We will come back  

to this point below (in terms of what we call Drake’s model) since it calls for simplification of  

the model.   

As checked later in this paper, the in-phase conductivity of soils depends slightly on  

the frequency. In the context of the dynamic Stern layer model, this dependence is purely  

related to the contribution of the Stern layer and we can write,   

1
'( ) ( )w S

F
      ,     (5)  

where ( )S   (in S m-1) denotes a frequency dependent surface conductivity. This surface  

conductivity takes place in the electrical double layer coating the surface of the grains and  

comprises two contributions: one from the diffuse layer (frequency independent) and one  

from the Stern layer (which is frequency dependent) (Figure 1). This surface conductivity has  

low-frequency and high frequency asymptotic values given by  
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0

( )

1
(1 )CECgS f

F
 




 
  
 

,      (6) 

( ) ( )

1
(1 ) CECg

S

S f f
F

 


 

 

 
      

 
,    (7) 

respectively.  

In equation (6), the DC surface conductivity is purely controlled by the diffuse layer. 

The contribution of the Stern layer is zero because the counterions remains stuck at the 

boundaries of the grains. At the opposite, at high frequencies both the the Stern and diffuse 

layers contribute to surface conductivity.  In the context of the linear conductivity model 

described by equations (2) and (3), we have 

0nM    ,      (8) 
0

n S SM    ,      (9) 

( )

1
CECS

n gM f
F

 




 
  
 

.    (10) 

Therefore the normalized chargeability is exactly the difference between the high frequency 

surface conductivity and the low frequency surface conductivity (note that this will not be true 

for a non-linear conductivity model). Equation (10) shows that the normalized chargeability 

depends on the properties of the grains ( g  and CEC), the properties of the Stern layer (
( )

S 
 

and f), and the texture of the porous material through the dependence of both the surface 

conductivity and the normalized chargeability on the formation factor F . Note that the 

salinity dependence of the normalized chargeability comes from the salinity dependence of 

the partition coefficient f and the salinity dependence of the tortuosity of the conduction paths 

at very low salinities for which the linear conductivity model is not valid [Niu et al., 2016]. 

We also note that the phase lag tan( "/ ') "/ '       and the chargeability /nM M   

cannot be considered as true polarization parameters. They both represent the ratio between a 

true polarization parameter (respectively, "  and nM ) and the conductivity (respectively, '  
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and   ). As detailed by Revil et al. [2015a, b], this concept is true only as long as the material  

does not contain metallic particles.   

We conclude this section with the following remarks. The surface conductivity and the  

normalized chargeability can be difficult to assess. The surface conductivity is indeed difficult  

to determine because the linear conductivity model (with bulk and surface conductivity  

working in parallel) is only valid when the surface conductivity is small (but non-negligible).  

When surface conductivity is high, this high salinity assumption is not valid anymore and the  

relationship between the conductivity of the porous material and the pore water conductivity  

is becoming non-linear (example of this non-linear behavior will be discussed for soils  

below). The normalized chargeability may be also difficult to accurately measure since it  

requires very broadband measurements. In time domain induced polarization, the normalized  

chargeability can be measured but requires that all the polarization length scales have been  

fully polarized, which can be only achieved through a long duration (100 to 200 s) of the  

primary current injection. The quadrature conductivity is easily measurable but its value is  

frequency dependent. In addition at high frequencies, >1 kHz, the quadrature conductivity  

associated with the polarization of the double layer of the grains can be masked by the  

Maxwell Wagner and dielectric polarization.   

2.3. Normalized chargeability versus quadrature conductivity  

The frequency effect FE is defined from the variation with the frequency of in-phase  

conductivity according to (Appendix A):   

   

 

' '
FE

'

D

D

   

 


 ,      (11)  

and therefore characterizes the change in in-phase conductivity between two angular  

frequencies   and D , and log(D) denotes the number of decades separating high and low  

frequencies. This frequency effect can be related to the phase angle  measured at the  
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geometric frequency 1/2D   [Shuey and Johnson 1973, and Van Voorhis et al. 1973] (see  

details in Appendix A)  

2
FE ln , for 1

π
D    .     (12)  

Equations (11) and (12) can be used to determine the relationship between the quadrature  

conductivity and the normalized chargeability. We assume that the conductivity itself is not a  

strong function of the frequency, which is the case for porous rocks (see Vinegar and  

Waxman [1984]) and soils. Then, we consider that the quadrature conductivity is determined  

close to the peak frequency used as the geometric mean frequency between a low frequency  

for which the conductivity is close to 0  and a high frequency for which the conductivity is  

close to   . In this case, equation (12) can be written as an equation for the normalized  

chargeability and the quadrature conductivity,   

2
ln "

π
nM D 

 
  

 
.     (13)  

Following our previous paper [Revil et al. 2015c], we can define a linear relationship between  

the quadrature conductivity and the normalized chargeability,   

" nM



  ,      (14)  

where   is a constant. Comparing Equations (13) and (14), we have,   

2
ln

π
D

 
  

 
.      (15)  

If we assume that high and low frequencies are separated by 6 decades (D = 106), we obtain  

  8.8 while if we use 7 decades, we obtain   10.3. We will consider therefore that  is  

typically in the range 5-10.   

2.4. Quadrature conductivity versus surface conductivity  

Following Revil et al. (2015c), we use the following definition for the dimensionless  

number R:   
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"
R n

S S

M 


  

 
    

 
,     (16)  

and therefore "/ R/S    . Using equations (7) and (10), this dimensionless number R can  

be related to the partition coefficient f (e.g., Revil et al. [2015c]) by  

( )

( ) ( )

R
(1 )

S

S

f

f f



 



 


   

.     (17)  

In the context of field resistivity interpretation, equation (16) is of paramount importance  

since it can be used to assess surface conductivity from the measurement of the quadrature  

conductivity and the knowledge of the value of the dimensionless number R, which is roughly  

a constant as discussed below.   

2.5. A modified Drake’s model   

 Drake’s model corresponds to the constant phase model explored in Appendix A and  

sketched in Figure 4. This is also the type of model used by Vinegar and Waxman [1984] to  

model the complex conductivity of shaly sands. The rational for this model is as follow. We  

assume that the distribution of polarization length scales is very broad e.g., fractal at least  

between two lengths scales. In this case, the phase is expected to be rather flat as discussed in  

details by Vinegar and Waxman [1984] in a frequency range. We will see later that if even for  

our soil samples, the phase is not completely flat with the frequency. Still, Drake’s model  

offers a very good way to connect the frequency effect FE and the phase or alternatively the  

normalized chargeability and the quadrature conductivity. In the context of Drake’s model,  

our approach leads to define a surface conductivity, a normalized chargeability, and a  

quadrature conductivity as  

1
CECS gB

F



  

  
 

,      (18)  

1
CECn gM

F




 
  
 

,      (19)  
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1
" CECg

F


 

 

 
  

 
,      (20)  

respectively, where ( ) ( )(1 ) SB f f      denotes the apparent mobility of the counterions  

for surface conduction (this parameter is close to the mobility B introduced by Waxman and  

Smits [1968] for the in-phase conductivity) and ( )

S f    denotes the apparent mobility of  

the counterions for the polarization associated with the quadrature conductivity (  is close to  

the apparent mobility introduced by Vinegar and Waxman [1984] for the quadrature  

conductivity). Note that the dimensionless number R is also given by R / B . We also  

neglect below the salinity dependence of the surface and quadrature conductivities (Weller  

and Slater [2012], Weller et al. [2013], Niu et al. [2016]) but this dependence could be easily  

added to our model using the approach developed in Niu et al. [2016]. The equivalent linear  

circuit of a soil can be sketched as in Figure 4 and can be seen as two resistances in parallel to  

a capacitance.  

 For field applications, it is important to expand the previous equations to include  

explicitly the effect of temperature. For soils, we are interested in the temperature range 0- 

50°C for which we can consider linear temperature variations [Waxman and Smits, 1968;  

Vinegar and Waxman, 1984; Revil et al., 1998]. This yields  

 0 0( ) ( ) 1 ...w w wT T T T        ,     (21)  

 0 0( ) ( ) 1 ...ST T T T        ,     (22)  

 0 0( ) ( ) 1 ...SB T B T T T      ,     (23)  

which corresponds to the temperature variations of ( )   (for equation 21) and 
( )

S 
 (for  

equations 22 and 23), respectively, 
0T  = 25°C, and w  and S  denote the sensitivity  

coefficients to temperature for the viscosity of the free water and bound water, respectively  

(typically for water w  0.020 °C-1). Equations (21) to (23) implies that the surface  
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conductivity, the normalized chargeability, and the quadrature conductivity depends on the  

temperature as  

 0 0( ) ( ) 1 ...S S ST T T T         ,     (24)  

 0 0( ) ( ) 1 ...n n SM T M T T T      ,     (25)  

 0 0"( ) "( ) 1 ...ST T T T        .     (26)  

The chargeability is expected to be temperature independent, i.e., / 0M T   . Again this is  

true only for the constant phase model for which there is no expected effect of the influence of  

the temperature on the relaxation times in the spectra.   

 Finally, another parameter to take into account is the effect of water saturation 
ws   

(with 0 1ws  ). Using the analysis made by Revil [2013], we arrive quickly at the following  

explicit dependencies with the water saturation:   

11
'( ) n n

w w w w Ss s s
F

    ,     (27)  

1
( ) CECp

n w w gM s s
F




 
  
 

,     (28)  

1
"( ) CECp

w w gs s
F


 

 

 
  

 
,     (29)  

with p = n-1 (see Vinegar and Waxman [1984] and Revil [2013] for some discussion on this  

subject). One of the predictions of equations (27) and (29) is that low salinity, the phase is  

expected to be independent of the saturation or equivalently the in-phase and quadrature  

conductivities are expected to have the same dependence with saturation. As explained for  

temperature, these dependencies are only correct for very flat spectra and he linear  

conductivity model.   

  

3. Material and methods   
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3.1. Samples  

 In May 2016, we collected 71 sediment samples at 8 different locations on the  

Walcheren peninsula; a deltaic area in the southwestern part of the Netherlands (Figure 5a).  

We used a hand auger to drill above the water table and a piston sampler and gouge auger for  

samples below the water table (Figure 5b). The depth of the water table ranged from 1-4 m  

below ground level. The drilling depth ranged from 3 to 8.5 m below ground level and the  

drilling diameter was about 7 cm. At each location we made a lithological description of the  

sediment in the field using the GEOTOP classification system [Stafleu et al., 2011]. Many  

drillings showed lithological heterogeneity (layering) on a very small scale (cm to dm). We  

selected homogenous sections to sample about 300 cm3 of sediment. We classified the  

samples into peat (4), clay (16), sandy clay (28), fine sand (22), and medium coarse sand (1)  

and conserved them in glass containers for laboratory analyses. In order to contrast the soil  

samples with a low CEC material, we complemented the soil samples with one sample of pure  

silica sand with a grain diameter of 184 μm (sample #Sd184, see Table 1). Hence, we  

analyzed 72 samples in total.   

3.2. Complex conductivity measurements  

For the sample holders, we keep the samples in their buckets with a cap (Figure 6).  

Four equally-spaced non polarizing Ag-AgCl2 electrodes (diameter 4 mm × 1 mm) are placed  

in the top of the sample holder with the cap. The interval between two consecutive electrodes  

is 2 cm. For the first experiment (i.e., performed at the lowest salinity), the samples were first  

dried and then saturated under vacuum. To avoid the effect of the dissolved salts stemming  

from the natural soil salinity, the samples were stored were kept for the month in equilibrium  

with a degassed NaCl solution. Its salinity and conductivity have been controlled through the  

addition of dry NaCl salt to a certain volume of demineralized water and electrical  

conductivity measurements were made with a calibrated conductimeter. The core samples are  
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saturated with the following NaCl brine solutions of following conductivities 0.031, 0.526,  

1.15, 5.7, 14.7, and 22 S m-1 (at 25°C). The last conductivity corresponds to the conductivity  

of a solution at saturation in salt, so the highest conductivity reachable for a NaCl solution at  

25°C. All the conductivity data reported in this paper are corrected for the effect of  

temperature using  0 0( ) ( ) 1 ( )bT T T T      and reported at 25°C, 0T  denotes the reference  

temperature ( 0T =25°C), T is the temperature of the solution, and 0.02 / Cb    (Vinegar and  

Waxman [1984]). For the other pore water conductivities, the change of brine is done by  

diffusion by letting the samples in a big tank in which the solution is at the desired salinity.  

This solution is changed very regularly (e.g., Revil et al. [2013, 2014a]). Equilibrium was  

reached in several weeks. For a few selected core samples, the complex conductivity spectra  

were repeated over time and the batch was considered to have reached equilibrium when the  

conductivity spectra were not observed to change over time.   

The resistance and phase shift are investigated at logarithmic intervals over the  

frequency range 0.1 Hz-45 kHz by the four-terminal method with a high-precision impedance  

analyzer developed by Zimmermann et al. [2008] (see Figure 6). The imposed injection  

voltage is set to 1 V. The measured phase is typically below 50 mrad, and most of the cases  

below 10 mrad imposing the use of very rigorous procedures including (1) the use of 4  

electrodes configuration, (2) electrodes with small phase errors and input impedances, (3) the  

minimization of potential electromagnetic couplings at high frequencies (i.e., minimizing  

metallic parts in the sample holders), (4) very stable electrodes for the low frequency  

measurements (i.e., no drifts), and (5) a correction procedure for equivalent circuit of the  

system without the core samples. The phase accuracy is typically around 0.1-0.2 mrad below  

1 kHz (Zimmermann et al. [2008], Revil and Skold [2011]). The total data acquisition time is  

around 10 minutes for each sample using 5 measurements per decade in frequency and 6  

cycles per measurements (to obtain a standard deviation).   
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An important point in the evaluation of the electrical conductivity is the determination  

of the geometrical factor (or cell constant) of the sample holder (e.g., Jougnot et al. [2010]).  

This factor is required to convert a resistance (or an impedance) to a resistivity (or complex  

resistivity). It accounts for the position of the electrodes, the boundary conditions, and  

possibly the conductivity of the material in the sample holder which affects the distribution of  

the current lines between the current electrodes A and B. In the present case, we use two  

distinct procedures to get this geometrical factor. The first procedure is based on using  

Comsol Multiphysics to solve numerically the Laplace equation for the electrical potential  

and considering the geometry of the sample holder and the position of the four electrodes  

AMNB (Figure 6). For materials with an electrical conductivity in the range 10-3 S m-1 to 1 S  

m-1, the geometrical constant was found to be 16.6±0.1 m-1. The second procedure was to fill  

the sample holder with brines of known conductivity (measured independently with a  

calibrated conductimeter) and measuring the resistance with our impedance meter. We found  

a geometrical factor of 16.5 ±0.5 m-1 independent of the conductivity (we used four brines in  

the range 0.01 S m-1 to 1 S m-1). In the following, we use a geometrical factor of 16.5 m-1  

independent of the conductivity of the material in the sample holder to interpret the  

impedance measurements.  

Typical spectra are shown in Figures 7 and 8. At high frequencies (typically above 200  

to 1000 Hertz), we can observe the Maxwell-Wagner polarization. Below these frequencies,  

the complex conductivity response is thought to be dominated by the polarization of the  

electrical double layer shown in Figure 2.   

3.2. Porosity, cation exchange capacity, and specific surface area  

Regarding the bulk density of the core sample   (in kg m-3), we use the following  

equation (1 ) S w      .where w  denotes the bulk density of the pore water (1000 kg  

m-3). For silica and clay minerals, we use a bulk density of 2650 kg m-3. The density of the  
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organic matter is ~100 kg m-3 [Federer et al., 1993; Tremblay et al., 2002] but we do not  

explicitly account for the organic matter fraction in our bulk density estimates. As a result,  

this simplification contributes to uncertainty in our porosity estimates. In general, the density  

of the solid phase should be determined independently, particularly for other soils such as  

those rich in carbonates.  

The cation exchange capacity data were obtained with the Hexammine cobalt (III)  

chloride method [Ciesielski et al., 1997]). In our case, the cation exchange capacity is  

determined as the capacity of removing amine from a 0.05 N Hexammine cobalt(III) Chloride  

solution. Hexammine cobalt(III) Chloride is characterized by a pronounced orange color.  

Because of sorption of the cobalt on clay minerals, the color of the solution gets weaker. By  

measuring the difference in strength of the color before and after contact with the sample, we  

can determine the CEC. The reduction in color is performed by absorbance measurements  

with a calibrated spectrophotometer (Bibby Scientific™ Jenway™ 6320D). The CEC  

provided in Table 1 are expressed in meq/100 g of dry material (which is the traditional unit  

for this parameter) and can be converted in the international system of units using 1 meq/100  

g = 963.20 C kg-1.   

The CEC methodology was tested with a smectite from the Clay Mineralogical  

Society (smectite SWy-2, Na-Montmorillonite from Wyoming, USA). We measured a CEC  

of 73.6 meq/100g while the reported CEC is 75 meq/100 g. The CEC methodology was  

revised to be applied to the clean sand (using a higher mass of grains and a reference solution  

with a lower concentration of Hexamine cobalt(III) Chloride). The result is reported in Table  

1). The CEC is reported versus the clay content in Figure 9. We see a rough linear  

relationship between the two quantities. If we extrapolate this relationship to 100% clay  

content, we find that the CEC of the pure clay fraction is ~100 meq/100 g, i.e., close to the  

CEC of pure smectite. This indicates that the soil samples we used are very rich in smectite.   
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Specific surface area measurements (relative to weight, i.e., in m2 g-1
) were also  

performed using the Brunauer-Emmett-Teller (BET) method using the five points method  

[Brunauer et al., 1938]. The BET measurements were performed using the Autosorb iQ gas  

sorption system from Quantachrome Instruments. The core samples were prepared in 1 to 5 g  

of powder. The samples were degassed at 20C for a minimum of 12 hours under a vacuum  

condition (Clausen and Fabricius [2000]). After degassing, the tube with evacuated samples  

was analyzed using liquid Nitrogen at 77 K. As a given relative pressure is reached, some  

nitrogen sorbs on the sample. During adsorption, the relative pressure is systematically  

increased while recording the volume of N2 adsorbed (cm3/g) at each partial pressure. The  

underlying theory of the BET approach is used to fit the data and to determine the specific  

surface area of the core samples, which are reported in Table 1.   

3.3. Effects of temperature and saturation  

Few additional measurements were performed to check the effects of both temperature  

and saturation. For temperature, a sample was placed in a bag immersed in a temperature- 

controlled bath and the temperature was changed in the range 25-38°C. For saturation, several  

samples were prepared from the same core and mixed with a prescribed amount of water and  

oil to reach the following set of water saturations sw = 1.0, 0.80, 0.60, 0.40, and 0.20.   

  

4. Results   

4.1. Surface conductivity and formation factor  

The conductivity of a soil versus the pore water conductivity usually displays a linear  

portion at solution conductivities and non-linear portion at low solution conductivities [e.g.,  

Shainberg et al., 1980]. An example of such a behavior is shown in Figure 10. The formation  

factor F and the surface conductivity S  (at a given frequency) are determined by plotting the  

in-phase conductivity versus the pore water conductivity (see Figures 11 and 12) and fitting  

This article is protected by copyright. All rights reserved.



 23 

the linear portion of the conductivity data using equation (5). The formation factors and  

surface conductivities are reported in Table 1. In Figure 13, we plot the formation factors  

versus the corresponding porosities. The dataset is fitted with an Archie’s law for the full set  

of core samples. This Archie’s law mF a   (applied at once to all the core samples together,  

a and m are purely empirical parameters) should not be misled with the Archie’s law used  

individually for each core sample mF    where m denotes the Archie’s exponent for each  

core sample and no calibration factor a is applied.    

  

4.2. Normalized chargeability versus quadrature conductivity  

We first investigate the relationship between the PFE 100FE and the phase over one  

decade (i.e., D = 10, see Appendix A) and more explicitly between 10 Hertz and 100 Hertz  

avoiding the effect of the Maxwell-Wagner polarization at high frequencies and noise in the  

data below 1 Hz. In this case the percentage frequency effect (PFE) is given by  

PFE 0.1467   [Vinegar and Waxman, 1984] where the phase is here expressed in mrad. In  

Figure 14, we use all of the sample data to study if this relationship is obeyed for in phase  

conductivity measured between 10 and 100 Hertz and the phase measured at the geometric  

mean (32 Hertz). We see that there is a perfect agreement for most of the data with the  

relationship PFE 100FE 0.1467   . The data that are too far from the trend are considered to  

be problematic (either because of experimental errors or because Drakes’s model does not  

apply) and are not considered further.  

In order to test equation (12), we perform an additional test on our data using all the  

core samples. We compare in Figure 15, the normalized chargeability between 1 Hertz and 1  

kHz and the quadrature conductivity determined at the geometric mean frequency of 32 Hertz.  

This normalized chargeability is defined as the difference in the in-phase conductivity  
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between 1 kHz and 1 Hertz. The data shown in Figure 15 exhibit linear trend with a slope    

= 4.4 consistent with the theoretical prediction.   

In Figure 16, we compare the normalized chargeability now determined over the  

frequency range 1 Hertz – 10 kHz (so 4 decades, D =104) with the quadrature conductivity at  

the geometric mean frequency of 100 Hertz. The data shown in Figure 16 exhibit a linear  

trend with a slope   = 6.2 consistent with the theoretical prediction for Drakes’ model   =  

5.9. In both cases, other data that are too far from the predicted trend are discarded for further  

analysis.   

4.2. Quadrature versus surface conductivities  

In Figure 17, we plot the quadrature conductivity versus the surface conductivity at the  

lowest salinity investigated in the present study (~0.03 S m-1, NaCl, 25°C). Same observations  

can be made at other frequencies. At this salinity, the conductivity of the soil samples is  

dominated by the surface conductivity as shown by Figures 10 to 12.   

In Figure 18, we use the surface conductivity determined using the full conductivity  

data set. We see that the trend displayed by the soil is consistent with other data sets. The soil  

samples investigated in the present paper are characterized by higher surface and quadrature  

conductivities than the core samples investigated in previous studies (see for instance Weller  

et al. [2013], Woodruff et al. [2014], Revil et al. [2014b], Revil et al. [2017a, b]). Figure 18  

validates equation (16) in providing a mean value of the dimensionless number R, this value  

being valid for several data sets.    

4.3. Normalized chargeability and chargeability  

In Figures 19 and 20, we plot the normalized chargeability obtained at the lowest  

salinity in this work versus the surface conductivity and the quadrature conductivity,  

respectively. Using these data and using equations (14) and (16), we have   
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and therefore R  0.057. From Table 1, the mean value of the tortuosity of our core sample is  

4.5F  . From Figure 21, the mobility of the counterions in the Stern layer is given by  

( )

S f  = 1.4 ×10-9 m2s-1V-1. Using ( )

S  = 1.9 ×10-9 m2s-1V-1, we obtain f = 0.74. In other  

words, 74% of the counterions are located or partitioned in the Stern layer. This is consistent  

with the values generally used in the dynamic Stern layer model at low salinities, especially  

for smectite-rich materials (Revil, 2013a).   

4.4. Influence of temperature  

In Figure 22a, we plot the in-phase and quadrature components of the complex  

conductivity as a function of temperature for the temperature range 25°C-38°C (at 100 Hertz,  

Sample BJ_J0811641, water conductivity at 25°C, 0.048 S m-1 NaCl). We found that  

w S  0.020 °C-1
b . In Figure 22b, we see that at first approximation, the chargeability  

M is independent of the temperature as predicted by the dynamic Stern layer model in the  

context of Drakes’s model. Perhaps, the observed slight decrease with temperature rise may  

be due to the release of cations from the Stern to the pore water.   

4.5. Influence of saturation  

The influence of saturation at low salinity is shown in Figure 23. At low salinity (here  

for a pore water conductivity of 0.006 S m-1 at 25°C), the in-phase conductivity is dominated  

by the surface conductivity and the saturation dependence of the conductivity of the soil is  

1n

ws  . The quadrature conductivity depends on saturation according to p

ws  with p = n-1  

[Vinegar and Waxman, 1984; Revil, 2013]. The results shown in Figure 3 agree with this  

picture with n  2 and p  0.9. For instance in Figure 24, we plot the in-phase conductivity of  

This article is protected by copyright. All rights reserved.



 26 

sample BB (also a fine sand) with the water saturation. This allows determining directly the  

second Archie’s exponent n and we find n  1.9, a value consistent with the previous values.   

  

5. Discussion   

Surface conductivity is an important ingredient in the interpretation of DC (Direct  

Current) resistivity data in hydrogeophysics. It is often neglected because it is difficult to  

independently measure surface conductivity under field conditions. The results of this study  

are in line with previous studies showing relationships between the surface conductivity, the  

quadrature conductivity, the normalized chargeability, the cation exchange capacity, and the  

specific surface area. The measured surface conductivities of our Holocene sediment samples  

was high compared to what has been reported from other studies. Therefore, in similar  

geological environments, it is recommended to take into account the effect of the surface  

conductivity in the interpretation of DC resistivity tomograms.   

The formation factors that have been derived in our study are remarkably higher than  

the ones inferred in previous studies in the same study area (e.g., De Louw et al. [2011]). To  

some extent this can be explained by the effect of the surface conductivity, which has not  

been taken into account previously. However, application of equation (5) with the values  

obtained for the surface conductivity, formation factor, and DC resistivity data [De Louw et  

al., 2011] generally leads to a higher pore water conductivity than what has been observed in  

hydrochemical sampling data. Finding a relationship for these differences is beyond the scope  

of this study, and it is recommended to study this issue further in the future.   

  

6. Conclusion   

 We have developed a large dataset of complex conductivity measurements of soils in  

order to test further the relationship between the normalized chargeability, the quadrature  
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conductivity, and the surface conductivity, the cation exchange capacity, and the specific  

surface area. The relationship between the normalized chargeability and the quadrature  

conductivity can be derived from Drakes’s model, which predicts very accurately the data.  

The second relationship between the quadrature conductivity and the surface conductivity is  

directly an output of the dynamic Stern layer model of polarization. The normalized  

chargeability is linearly related to the cation exchange capacity of the materials while the  

chargeability is independent of the cation exchange capacity. Therefore, in hydrogeophysics,  

for facies discrimination it is preferable to image the normalized chargeability rather than the  

chargeability. In addition, the model can be used to predict the effect of temperature and water  

content on the complex conductivity of soils.   
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Appendix A. Frequency effect versus phase  

 The amplitude of the complex resistivity *  is related to the amplitude of the  

complex conductivity *  by,   

2 2

1 1
*

* ' "
 

  
  


.    (A1)  

and * ' "i    . The phase lag    is related to the in-phase and quadrature components of  

the complex conductivity by,   

"
tan

'





 ,       (A2)  

(the phase is negative when the quadrature conductivity is negative). The frequency effect is  

defined differently in different papers. For instance we can find,  

   

 

' '
FE

'

D   

 


 ,      (A3)  

or,   

   

 
FE

D

D

   

 


 ,      (A4)  

in Vinegar and Waxman [1984] (their equation 8) and Börner [1992] (his equation 5),  

respectively. Since the phase is usually small and the conductivity is dominated by the in- 

phase conductivity, we can also derive the expression used in the main text  

   

 

' '
FE

'

D

D

   

 


 ,      (A5)  

i.e., we are just using the in-phase component of the complex conductivity at two frequencies.  

To obtain equation (A5), we have started with the expression by Vinegar and Waxman  

[1984], Equation (A3), and we have neglected the imaginary component of the complex  

resistivity. Following Van Voorhis et al. [1973], we can now relate the FE to the phase. Van  

Voorhis et al. [1973] started their analysis using Drake’s complex resistivity model,   

 *( )
b

K i   


  .     (A6)  
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where K is a constant, b positive exponent linearly related to the chargeability M [Van  

Voorhis et al., 1973], and   (>0) a characteristic frequency. This parametric model provides  

usually a fairly good fit to experimental data in the frequency range 0.1 Hertz-100 Hertz (e.g.,  

Börner [1992]). Experimental data shows that b << 1 [Van Voorhis et al., 1973, Börner,  

1992]. Note that this model is also similar to the model of Jonscher [1981]  

1*( ) ( ) p

n ni      where n  denotes the amplitude factor, p is a frequency exponent, and  

n  the angular frequency normalized to 1 s-1 [Börner, 1992]. In order to determine the  

amplitude and the phase, we start with equation (A6),  

 *( ) exp lnK b i       
.     (A7)  

The log of a complex number ln( ) i   is given by:  

 2 2 1

2 2
ln( ) ln 2 tan 2i i k


    

  


  
      

     

.            (A8)  

When k  and only if 0 , and retaining the first determination (i.e., k=0), we can write:  

 2 2 1ln( ) ln tan  
     

 
i i


   


.     (A9)  

Applying equation (A9) to (A7) yields  

2 2 1*( ) exp ln tanK b ib




   




  

      
   

,   (A10)  

 2 2 12*( ) exp tan
b

K ib




   






  
     

   

.   (A11)  

The complex resistivity can be expressed in terms of its amplitude and phase,  

 *( ) *( ) exp i     ,     (A12)  

 2 2 2*( )
b

K     


   ,    (A13)  
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1tanb








 

    
 

.      (A14)  

respectively. In the limit    the phase is given by 2 / πb   . This is why the Drake’s  

model is also called the constant phase model. Van Voorhis et al. [1973] start with a slightly  

different definition of the FE than given above,   

   

 
FE

D   

 


 .      (A15)  

Now the frequency effect between   and D  is given by FE 1 bD  . Using the expression  

2 / πb    derived above, we obtain,   

2

πFE 1 D


  ,       (A16)  
2

π1 FE=D


 ,       (A17)  

 
2

πln 1 FE ln D


  .      (A18)  

Since FE is small (much smaller than unity, see Figure 14), we have  

                 
2 2

π πFE ln ln exp ln
       

       
       

D D
  ,     (A19)  

2
FE ln

π
D  .      (A20)  

Equation (A20) corresponds to the equation used in the main text. Shuey and Johnson [1973]  

obtained exactly the same expression based on a very different complex resistivity model.  

This could mean that equation (A20) could be quite general but we end up not being able to  

derive a general proof for the validity of this equation.   
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Tables.  

Table 1. The formation factor and the surface conductivity are determined at the following  
pore water conductivities 0.031, 0.53, 1.15, 5.7, 14.7, and 22 S m-1. The following parameters  
, S, Sp, and CEC denote the porosity, the surface conductivity, the specific surface area, and  
the cation exchange capacity, respectively. The following codes are used for the type of soil:  
K = clay, KZ = sandy clay, V = peat, ZF = fine sand, and ZM is medium coarse sand, SS:  
pure silica sand. ID is the code name of the samples.The quadrature conductivity is given at 1  
kHz. The CEC is reported in meq/100 g with 1 meq/100 g = 1 cMol kg-1 = 963.2 C kg-1 and  
the specific surface area Ssp (measured with the BET method) is reported in m2 g-1. Mn is  
determined at a pore water conductivity of 0.031 S m-1 between 0.1 Hertz and 10 kHz. For the  
clean sand (#Sd184), the normalized chargeability and the quadrature conductivity (at 20 Hz,  
peak frequency) was obtained at a pore water conductivity of 0.1 S m-1 NaCl, and the CEC is  
an average of 5 measurements.   
  

ID Type  F 
(-) 

S 
(S/m) 



(-) 
” 

(S m-1) 

CEC 
(meq/100 g)

Sp 
(m2 g-1) 

Mn 
(S m-1) 

AA 
AB 
AC 
AD 
AE 
AF 
AG 
AH 
AI 
AJ 
AK 
AM 
AN 
AO 
AP 
AR 
AS 
AT 
AU 
AV 
AW 
AX 
AY 
AZ 
BA 
BB 
BC 
BD 
BE 
BF 
BG 
BH 
BI 

K 
ZF 
V 
KZ 
KZ 
K 

KZ 
K 
ZF 
ZF 
KZ 
K 

KZ 
KZ 
KZ 
KZ 
ZF 
ZF 
ZF 
ZF 
ZF 
ZF 
ZF 
KZ 
ZF 
ZF 
ZF 
ZF 
ZF 
KZ 
K 

KZ 
KZ 

5.3 
6.3 
4.0 

6.17 
7.83 
6.34 
11.0 
9.1 

11.4 
10.8 
8.8 

5.32 
9.02 

10.23 
8.77 
7.03 
11.2 
9.4 

11.0 
9.81 

10.75 
10.98 
10.18 
6.33 
9.52 

10.15 
8.87 
8.69 

11.28 
6.3 
5.4 
9.4 

4.75 

0.40 
0.23 
0.37 
0.39 
0.33 
0.54 
0.34 
0.34 
0.29 
0.30 
0.32 
0.49 
0.35 
0.31 
0.42 
0.54 
0.19 
0.20 
0.21 
0.17 
0.18 
0.24 
0.19 
0.39 
0.20 
0.21 
0.22 
0.23 
0.30 
0.34 
0.39 
0.37 
0.16 

0.730 
0.541 
0.941 
0.691 
0.522 
0.642 
0.487 
0.486 
0.498 
0.442 
0.549 
0.722 
0.569 
0.453 
0.537 
0.596 
0.593 
0.495 
0.543 
0.497 
0.555 
0.418 
0.513 
0.611 
0.482 
0.422 
0.491 
0.542 
0.487 
0.589 
0.690 
0.443 
0.638 

0.003755 
0.00087 
0.00346 

0.002774 
0.00139 
0.00295 

0.000709 
0.002323 
0.000768 
0.000672 
0.002659 
0.004963 
0.001473 
0.001021 
0.052054 
0.002076 
0.000368 
0.000746 
0.000585 
0.000419 
0.000349 
0.000967 
0.000572 
0.003214 
0.000555 
0.001186 
0.000655 
0.001195 
0.000603 
0.004337 
0.120592 
0.003272 
0.00365 

19.8 
7.10 
39.3 
90.3 
19.1 
17.6 
9.40 
16.9 
3.90 
3.40 
4.70 
13.7 
4.10 
3.80 
9.50 
11.8 

0.900 
3.30 
3.00 
1.70 
1.40 
7.50 
1.90 
16.0 
2.00 
7.00 
1.90 
9.10 
1.70 
16.8 
14.2 
19.9 
12.5 

12.0 
6.52 
1.60 
6.84 

10.23 
19.35 
1.80 

10.76 
2.43 
3.94 
3.85 
9.55 
3.62 
3.41 
7.99 
9.03 
0.35 
3.71 
1.80 

0.187 
0.51 
4.91 
2.18 

14.61 
1.92 
7.86 
1.67 
4.12 
1.97 
7.9 

14.6 
36.6 
9.54 

0.01378 
0.001973 
0.01420 
0.01117 

0.005385 
0.009959 
0.001708 
0.007969 
0.002055 
0.001564 
0.007869 
0.01952 
0.00451 

0.003025 
 

0.007931 
0.0001673 
0.0007966 
0.0008577 
0.0002919 
0.0004455 
0.002469 
0.001180 
0.012294 
0.001057 
0.004496 
0.001526 
0.003382 
0.001360 
0.008766 

 
0.01030 
0.01112 
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BJ 
BK 
BL 
BM 
BN 
BO 
BP 
BQ 
BR 
BS 
BT 
BU 
BV 
BW 
BX 
BY 
BZ 
CA 
CB 
CC 
CD 
CE 
CF 
CG 
CH 
CI 
CJ 
CK 
CL 
CM 
CN 
CO 
CP 
CR 
CS 
CT 
CV 
CW 
CX 

Sd184 

KZ 
KZ 
ZF 
KZ 
KZ 
ZF 
KZ 
ZF 
V 
KZ 
KZ 
KZ 
KZ 
K 
K 

KZ 
K 
K 

KZ 
KZ 
KZ 
K 

KZ 
K 

KZ 
V 
ZF 
ZM 
ZF 
KZ 
K 
K 
V 
K 
K 
V 
ZF 
K 
ZF 
SS 

7.28 
6.69 
6.32 
5.84 
8.04 
5.68 
6.97 
9.3 
3.9 
8.4 
5.9 
8.2 
8.8 
7.5 
8.6 
8.3 
7.0 
6.5 
6.5 
8.1 
9.1 
6.7 
6.5 
4.8 
7.4 
8.5 
11 

12.6 
14.2 
7.9 
6.1 
7.7 
3.8 
7.3 
8.3 

3.97 
10.4 
8.37 
12 
3.6 

0.27 
0.37 
0.36 
0.71 
0.43 
0.39 
0.53 
0.42 
0.38 
0.33 
0.40 
0.21 
0.50 
0.41 
0.41 
0.37 
0.23 
0.60 
0.62 
0.24 
0.45 
0.27 
0.34 
0.62 
0.73 
0.35 
0.30 
0.26 
0.23 
0.71 
0.38 
0.53 
0.59 
0.54 
0.37 
0.45 
0.28 
0.30 
0.28 

0.006 

0.556 
0.579 
0.591 
0.687 
0.526 
0.619 
0.590 
0.466 
0.927 
0.494 
0.666 
0.410 
0.442 
0.533 
0.528 
0.508 
0.539 
0.58 

0.605 
0.537 
0.454 
0.568 
0.636 
0.784 
0.579 
0.454 
0.357 
0.424 
0.346 
0.577 
0.578 
0.497 
0.959 
0.606 
0.465 
0.968 
0.422 
0.463 
0.455 
0.387 

0.002161 
0.270767 
0.00173 

0.005476 
0.009165 
0.003556 
0.001096 
0.003719 
0.003273 
0.003729 
0.001439 
0.001496 
0.001908 
1.126956 

- 
- 

0.00296 
0.348636 
0.001569 
0.007913 
0.008023 
0.002321 
0.000898 
0.003642 
0.002245 
0.001511 

- 
0.000819 
0.004246 

- 
0.003484 

- 
0.004004 
0.003753 
0.003127 
0.002465 
0.00111 

0.001925 
- 

2×10-5 

3.60 
12.5 
3.60 
13.6 
25.1 
11.2 
14.0 
6.00 
54.4 
6.80 
41.2 
12.2 
23.1 
14.7 
12.7 
12.5 
12.9 
13.4 
12.0 
24.7 
6.50 
14.9 
21.2 
18.6 
16.0 
9.40 
2.10 
2.90 
1.90 
18.0 
15.3 
14.8 
26.6 
14.1 
6.50 
9.60 
3.50 
18.8 

 
0.096 

9.5 
8.8 
7.0 

22.9 
39.5 

13.28 
11.5 
5.97 

0.403 
5.86 
8.68 
16.0 
33.4 
15.6 
12.9 

16.05 
10.5 
15.0 

17.16 
10.0 
8.7 

13.6 
15.87 
17.63 
3.30 

0.696 
0.503 
0.48 
2.05 
12.1 
16.3 
14.4 
0.39 

15.90 
4.49 

0.326 
2.89 
42.2 

0.871 
 

0.008675 
 

0.005578 
0.014649 
0.034022 
0.011060 

 
0.008123 
0.013473 
0.010003 
0.002899 
0.004577 
0.006894 

 
 
 

0.01130 
 

0.00433 
0.02069 
0.02324 
0.01856 

0.008728 
0.002066 
0.01542 

0.009177 
0.005117 

 
0.001751 
0.010447 
0.001333 
0.012537 

 
0.03283 
0.01306 
0.01037 

0.003900 
0.007671 

 
0.00009 
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Figures  
  
  

  
  
Figure 1. Nature of the electrical double layer in clay minerals. a. Clay minerals are  
characterized by a pH-dependent charge on the edge of their particles and, for some of them  
like smectite, a permanent charge associated with isomorphic substitutions in their crystalline  
framework. b. The effective charge density is counterbalanced by ions in the Stern and diffuse  
layers. This gives rise to two excess conductivities defined as the integral over the distance of  
the difference between the local conductivity (x) and the conductivity of the pore water w.  
The surface conductivities S  and d  correspond to the contributions associated with the  
Stern and diffuse layers, respectively.  
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Figure 2. Polarization of a grain coated by an electrical double layer composed by a diffuse  
layer (DL) and a Stern layer (SL) of weakly sorbed counterions that are mobile along the  
grain surface but that cannot leave the Stern layer. a. Just after the application of the primary  
electrical field E0, all the charge carriers are mobile. The instantaneous conductivity is   . b.  
If the primary electrical field is applied for a long time, the conductivity is 0 (1 )M     
where M stands for the chargeability of the material (dimensionless). Some of the charge  
carriers (those of the Stern layer) are now blocked at the edge of the grain in the direction of  
the electrical field. As the result, the conductivity of the material is reduced. The time  
constant  would be the relaxation time required for the charge carriers to come back to their  
equilibrium situation, i.e., to go from the situation described in the right side of the sketch to  
the situation described in the left side. During the polarization, the grain acquires a dipole  
moment similar to the phenomenon observed in dielectric polarization.   
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Figure 3. Equivalent circuit of a soil. The conduction corresponds in first approximation to  
two resistances in parallel, one corresponding to the conduction in the bulk pore water and  
one associated with conduction on the electrical double layer. This is true only as long as the  
conduction is essentially dominated by the bulk pore water and the electrical field controlled  
by the distribution of the bulk conductances of the pore network with surface conductivity as  
a first-order perturbation with respect to the bulk conductivity. The Stern layer provides  
another additional conductivity and is responsible for the polarization of the material. The  
Warburg capacitance is used to model the Stern layer as a leaking capacitance.   
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Figure 4. First-order approximation of the equivalent circuit of a soil at high frequencies. a.  
Equivalent circuit. Conduction associated with the electromigration of the charge carriers  
comprises two contributions, one associated with the bulk pore water and the other with  
conduction in the electrical double layer (including the Stern and diffuse layers). The  
capacitance corresponds to the polarization of the Stern layer coating the surface of the grains  
(Figure 1). b. Complex conductivity representation. The complex conductivity * is  
characterized by an in-phase component and a quadrature component. The tangent of the  
phase angle  represents the ratio between polarization (described by the quadrature  
conductivity "  or the normalized chargeability 

nM ) and conduction described by the in- 
phase conductivity ' . This in-phase conductivity is itself the sum of two contributions, a  
bulk conductivity (given by the conductivity of the pore water 

w  divided by the formation  
factor F) and a surface conductivity 

S .   
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Figure 5. Origin of the core samples. a. Overview of the sample locations on the Walcheren  
peninsula in the Netherlands. b. Collected sediment at location B08, retrieved using a hand  
auger (on the left, for sediment above the water table) and piston sampler (on the right, for  
below the water table).  
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Figure 6. Impedance meter, position of the electrodes, and core samples. a. Position of the A- 
B current electrodes and M-N voltage electrodes on the surface of the core samples. The  
distance between the electrodes is 2 cm, the height of the sample holder is 2.5 cm, and its  
diameter is 7.0 cm. The four Ag-AgCl2 electrodes (diameter 4 mm × 1 mm) are glued on a  
cap used to prevent evaporation during the measurements. b. ZEL-SIP04-V02 impedance  
meter (see Zimmermann et al. [2008]) used for the laboratory experiments. The current  
electrodes A and B are non-polarizing Ag-AgCl electrodes. Two (point) potential electrodes  
M and N are non-polarizing Ag-AgCl electrodes. The geometrical factor is computed from  
numerical modeling using Comsol Multiphysics as well as calibrated using 5 brines of  
independently determined electrical conductivity. c. Three examples of core samples.   
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Figure 7. Complex conductivity spectrum (real/in-phase and absolute value of the  
imaginary/quadrature components). Sample AC_0580586123 (black peat), Sample  
AR_1126238AA (sandy clay), Sample CH_1567575AA (sandy clay), Sample  
CW_0580586130 (clay). The strong increase of the quadrature conductivity above 1 kHz  
corresponds to dielectric phenomena including the Maxwell Wagner polarization. Spectra are  
reported here at the lowest salinity.  
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Figure 8. Complex conductivity spectrum (real/in-phase and absolute value of the  
imaginary/quadrature components). Sample BJ_J0811641 (Gray sandy clayey soil), sample  
AM-1126230AA (Gray/black clayey soil), sample AX_J0739296 (fine sand), and sample  
CG_J0756485 (clay). The strong increase of the quadrature conductivity above 1 kHz  
corresponds to dielectric phenomena including the Maxwell Wagner polarization. Spectra are  
reported here at the lowest salinity.  
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Figure 9. Relationship between the cation exchange capacity (CEC) and the clay content  
taken as the weight fraction of fine particles smaller than 2 m. The data are scattered because  
of the effect of humus and variations between the core sample in the clay mineralogy.   
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Figure 10. Conductivity versus pore water conductivity showing the linear (obeying to  
equation 5) and non-linear portions of the conductivity plot. The non-linear portion at low  
salinities is due to a change in the tortuosity of the conduction paths. The quantities  and w  
define the conductivity of the soil and the conductivity of the pore water.   
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Figure 11. Conductivity of the material versus the pore water conductivity for 4 samples  
(AC: Black peat, AM: Gray/black clay, BG: Gray clay, BK: Gray sandy clay). We see clearly  
that the data exhibit an isoconductivity point (at the intersection of the two curves, one being  
the isoconductivity line and the other the linear conductivity model, see equation 5).  
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Figure 12. Conductivity of the material versus the pore water conductivity for 4 samples (AE:  
Dark sandy clay, AG: gray sand, CF: gray clay, BG: gray clay). We see clearly that the data  
exhibit an isoconductivity point (at the intersection of the two curves, one being the  
isoconductivity line and the other the linear conductivity model, see equations 5).  
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Figure 13. Relationship between the formation factor and the porosity and fit with the  
empirical Archie’s law (peat samples excluded).    
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Figure 14. Relationship between the percentage frequency effect PFE and the phase (at the  
geometric frequency) for the low salinity dataset. The theoretical prediction  
PFE 100FE 0.1467    is also shown for comparison. The three points outside the trends are  
considered to be problematic.   
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Figure 15. Relationship between the normalized chargeability (between 1 Hertz and 1  
kHertz) and the quadrature conductivity (at the geometric frequency of 32 Hertz) for the low  
salinity dataset. The theoretical prediction is 4.4 "nM    is also shown for comparison.  
The points outside the trends are considered to be problematic.       
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Figure 16. Relationship between the normalized chargeability and the quadrature  
conductivity for the low salinity dataset and the frequency range 0.1 Hertz-10 kHz. The  
theoretical prediction is (2 / π) ln D   . If we assume that high and low frequencies are  
separated by 5 decades (D = 105), we obtain   5.9 consistent with the best fit of the data  
(6.2±0.1).   
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Figure 17. Direct linear relationship between quadrature conductivity and surface  
conductivity for the soil samples at the low pore water conductivity of 0.03 S m-1 (NaCl,  
25°C). Here we are below the isoconductivity point and the surface conductivity is considered  
to be directly equal to the in-phase conductivity. Both the in-phase and quadrature  
conductivity are taken at 100 Hertz. Taking  = 8, this yields R = 0.057.   
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Figure 18. Direct linear relationship between quadrature conductivity and surface  
conductivity over seven orders in magnitude in the variations of the two parameters. Note that  
the soil samples (in red) are characterized by higher surface conductivity and quadrature  
conductivity than the other core samples investigated to date. The other data for sedimentary  
rocks are from Weller et al. [2013], Woodruff et al. [2014], and Revil et al. [2014b]. The data  
for the volcanic rocks are from Revil et al. [2017a, b].   
  
   

This article is protected by copyright. All rights reserved.



 60 

  

  
  
Figure 19. Linear relationship between normalized chargeability (between 0.1 Hertz and 40  
kHz) and surface conductivity for the soil samples at 0.03 S m-1 (NaCl, 25°C). The plain line  
corresponds to the best fit of the data using a linear model between the normalized  
chargeability and the surface conductivity.   
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Figure 20. Linear relationship between normalized chargeability (between 0.1 Hertz and 40  
kHz) and the magnitude of the quadrature conductivity (at 100 Hertz) for the soil samples at  
0.03 S m-1 (NaCl, 25°C). The plain line corresponds to the best fit of the data using a linear  
model between the normalized chargeability and the quadrature conductivity.   
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Figure 21. Linear relationship between the normalized chargeability (between 0.1 Hertz and  
40 kHz) and the chargeability for the soil samples at 0.03 S m-1 (NaCl, 25°C) versus either the  
cation exchange capacity and the specific surface area. a. Normalized chargeability versus  
CEC. b. Chargeability versus CEC. For a) and b) the sandstone data are from Vinegar and  
Waxman [1984] (all samples at the lowest salinity, the normalized chargeability are obtained  
using his quadrature conductivity data at 0.1 S m-1 using  = 8).  c. Normalized chargeability  
versus specific surface area. d. Chargeability versus specific surface area. For b) and c), the  
sandstone data are from Börner [1992] where the normalized chargeability are obtained using  
his quadrature conductivity data at 0.1 S m-1 using  = 8.   
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Figure 22. Influence of the temperature. a. Influence of the temperature on the magnitude of  
the in-phase and quadrature components of the complex conductivity. b. Influence of the  
temperature on the chargeability. As predicted by the dynamic Stern layer model, the  
chargeability is nearly temperature independent.   
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Figure 23. Saturation dependence of the complex conductivity at low salinity. Left side:  
Saturation dependence of the conductivity and phase spectra at low salinity (each curve  
corresponds to a distinct core sample). While the conductivity changes with the saturation, the  
phase is roughly constant as expected from the model. Left side: saturation dependence of the  
in-phase and quadrature conductivities (1 Hertz) at low salinity. Note that the saturation  
exponents (n-1) and p are roughly the same (1.0 versus 0.9) in agreement with the model  
(Sample AY, fine sand, pore water conductivity 0.06 S m-1).  
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Figure 24. Saturation dependence of the in phase conductivity (1 Hertz)) at high salinity  
(NaCl solution at 5 S m-1, sample BB, fine sand). The dependence is used to determine the  
second Archie’s exponent n.   
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