9 research outputs found

    Biomaterials‐Based Approaches to Tumor Spheroid and Organoid Modeling

    Full text link
    Evolving understanding of structural and biological complexity of tumors has stimulated development of physiologically relevant tumor models for cancer research and drug discovery. A major motivation for developing new tumor models is to recreate the 3D environment of tumors and context‐mediated functional regulation of cancer cells. Such models overcome many limitations of standard monolayer cancer cell cultures. Under defined culture conditions, cancer cells self‐assemble into 3D constructs known as spheroids. Additionally, cancer cells may recapitulate steps in embryonic development to self‐organize into 3D cultures known as organoids. Importantly, spheroids and organoids reproduce morphology and biologic properties of tumors, providing valuable new tools for research, drug discovery, and precision medicine in cancer. This Progress Report discusses uses of both natural and synthetic biomaterials to culture cancer cells as spheroids or organoids, specifically highlighting studies that demonstrate how these models recapitulate key properties of native tumors. The report concludes with the perspectives on the utility of these models and areas of need for future developments to more closely mimic pathologic events in tumors.State‐of‐the‐art approaches using natural, synthetic, and composite biomaterials for 3D tumor modeling are presented in this Progress Report. Furthermore, it is discussed how these models uniquely reproduce key properties of native tumors to facilitate basic and applied cancer research and cancer drug discovery efforts.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142941/1/adhm201700980.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142941/2/adhm201700980-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142941/3/adhm201700980_am.pd

    Cyclical Treatment of Colorectal Tumor Spheroids Induces Resistance to MEK Inhibitors

    No full text
    Adaptive drug resistance is a major obstacle to successful treatment of colorectal cancers. Physiologic tumor models of drug resistance are crucial to understand mechanisms of treatment failure and improve therapy by developing new therapeutics and treatment strategies. Using our aqueous two-phase system microtechnology, we developed colorectal tumor spheroids and periodically treated them with sub-lethal concentrations of three Mitogen Activated Kinase inhibitors (MEKi) used in clinical trials. We used long-term, periodic treatment and recovery of spheroids to mimic cycles of clinical chemotherapy and implemented a growth rate metric to quantitatively assess efficacy of the MEKi during treatment. Our results showed that efficacy of the MEKi significantly reduced with increased treatment cycles. Using a comprehensive molecular analysis, we established that resistance of colorectal tumor spheroids to the MEKi developed through activation of the PI3K/AKT/mTOR pathway. We also showed that other potential feedback mechanisms, such as STAT3 activation or amplified B-RAF, did not account for resistance to the MEKi. We combined each of the three MEKi with a PI3K/mTOR inhibitor and showed that the combination treatments synergistically blocked resistance to the MEKi. Importantly, and unlike the individual inhibitors, we demonstrated that synergistic concentrations of combinations of MEK and PI3K/mTOR inhibitors effectively inhibited growth of colorectal tumor spheroids in long-term treatments. This proof-of-concept study to model treatment-induced drug resistance of cancer cells using 3D cultures offers a unique approach to identify underlying molecular mechanisms and develop effective treatments

    Multiparametric Analysis of Oncology Drug Screening with Aqueous Two-Phase Tumor Spheroids

    No full text
    Spheroids present a biologically relevant three-dimensional model of avascular tumors and a unique tool for discovery of anticancer drugs. Despite being used in research laboratories for several decades, spheroids are not routinely used in the mainstream drug discovery pipeline primarily due to the difficulty of mass-producing uniformly sized spheroids and intense labor involved in handling, drug treatment, and analyzing spheroids. We overcome this barrier using a polymeric aqueous two-phase microtechnology to robotically microprint spheroids of well-defined size in standard 384-microwell plates. We use different cancer cells and show that resulting spheroids grow over time and display characteristic features of solid tumors. We demonstrate the feasibility of robotic, high-throughput screening of 25 standard chemotherapeutics and molecular inhibitors against tumor spheroids of three different cancer cell lines. This screening uses over 7000 spheroids to elicit high quality dose-dependent drug responses from spheroids. To quantitatively compare performance of different drugs, we employ a multiparametric scoring system using half-maximum inhibitory concentration (IC<sub>50</sub>), maximum inhibition (<i>E</i><sub>max</sub>), and area under the dose–response curve (AUC) to take into account both potency and efficacy parameters. This approach allows us to identify several compounds that effectively inhibit growth of spheroids and compromise cellular viability, and distinguish them from moderately effective and ineffective drugs. Using protein expression analysis, we demonstrate that spheroids generated with the aqueous two-phase microtechnology reliably resolve molecular targets of drug compounds. Incorporating this low-cost and convenient-to-use tumor spheroid technology in preclinical drug discovery will make compound screening with realistic tumor models a routine laboratory technique prior to expensive and tedious animal tests to dramatically improve testing throughput and efficiency and reduce costs of drug discovery

    Phytochemicals inhibit migration of triple negative breast cancer cells by targeting kinase signaling

    Full text link
    Abstract Background Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.http://deepblue.lib.umich.edu/bitstream/2027.42/173536/1/12885_2019_Article_6479.pd
    corecore