76 research outputs found

    Bisphosphonate ISS Flight Experiment

    Get PDF
    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+<2 week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control groups suggests significant but incomplete improvement in maintaining BMD using the newer exercise protocols compared to earlier resistive exercise protocols. Quantitative characterization of this improvement requires additional measurements in the ARED control group that we are currently collecting. In conclusion, these results indicate that an antiresorptive may be an effective adjunct to exercise during long-duration spaceflight

    The hypoxia imaging agent Cu ii(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is a progressive, chronic disease characterized by dyskinesia, rigidity, instability, and tremors. The disease is defined by the presence of Lewy bodies, which primarily consist of aggregated α-synuclein protein, and is accompanied by the loss of monoaminergic neurons. Current therapeutic strategies only give symptomatic relief of motor impairment and do not address the underlying neurodegeneration. Hence, we have identified Cu II(atsm) as a potential therapeutic for PD. Drug administration to four different animal models of PD resulted in improved motor and cognition function, rescued nigral cell loss, and improved dopamine metabolism. In vitro, this compound is able to inhibit the effects of peroxynitrite-driven toxicity, including the formation of nitrated α-synuclein oligomers. Our results show that Cu II(atsm) is effective in reversing parkinsonian defects in animal models and has the potential to be a successful treatment of PD

    Antibodies against endogenous retroviruses promote lung cancer immunotherapy

    Get PDF
    B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS). Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response

    Moving Slow and Fixing Things

    No full text
    The United States could learn from Europe’s approach to incentivizing cybersecurity

    Open system architecture for real-time control using an uml-based approach

    No full text
    We describe a generic architecture that is applicable to the engineering of many real-time control problems. We further describe how UML is used to apply the architecture to the problems.
    corecore