2,074 research outputs found

    Fluctuations of radiation from a chaotic laser below threshold

    Get PDF
    Radiation from a chaotic cavity filled with gain medium is considered. A set of coupled equations describing the photon density and the population of gain medium is proposed and solved. The spectral distribution and fluctuations of the radiation are found. The full noise is a result of a competition between positive correlations of photons with equal frequencies (due to stimulated emission and chaotic scattering) which increase fluctuations, and a suppression due to interaction with a gain medium which leads to negative correlations between photons. The latter effect is responsible for a pronounced suppression of the photonic noise as compared to the linear theory predictions.Comment: 7 pages, 5 figures; expanded version, to appear in Phys. Rev.

    Comparison of optimal designs of steel portal frames including topological asymmetry considering rolled, fabricated and tapered sections

    Get PDF
    A structural design optimisation has been carried out to allow for asymmetry and fully tapered portal frames. The additional weight of an asymmetric structural shape was found to be on average 5 to 13% with additional photovoltaic (PV) loading having a negligible effect on the optimum design. It was also shown that fabricated and tapered frames achieved an average percentage weight reduction of 9% and 11%, respectively, as compared to comparable hot-rolled steel frames. When the deflection limits recommended by the Steel Construction Institute were used, frames were shown to be deflection controlled with industrial limits yielding up to 40% saving

    Model the Relationship of NH3 Emission with Attributing Factors from Rice Fields in China: Ammonia Mitigation Potential Using a Urease Inhibitor

    Get PDF
    Substantial ammonia (NH3) losses from rice production result in poor nitrogen (N) use efficiency and environmental damage. A data synthesis using the published literature (127 studies with 700 paired observations), combined with an incubation experiment using 50 paddy soils from across China, were conducted to improve the current understanding of the NH3 loss from paddy rice and its drivers. The efficacy of the urease inhibitor LimusÂź for reducing NH3 losses was also evaluated. The mean loss of N, through NH3 volatilization, was 16.2% of the urea-N applied to paddy rice. The largest losses were from double rice cropping systems, and losses increased with the N application rate, surface application of N, unstable N types (ammonium bicarbonate and urea), and high floodwater pH. Under simulated flooded conditions, urea amended with LimusÂź reduced NH3 loss by 36.6%, compared to urea alone, but floodwater pH had a significant effect on inhibitor efficacy. Key driving factors were air temperature, N application rate, and floodwater pH. The effectiveness and limitations of the inhibitor in NH3 emission mitigation was examined, as well as its basis as one means of N pollution control in paddy rice cropping systems

    A green eco-environment for sustainable development - framework and action

    Get PDF
    Following its 40-year reform and ‘Open Door’ policy, China has recently proposed a new approach to green development and rural revitalization—the idea of Agriculture Green Development (AGD), with the key feature of creating a green eco-environment. In this minireview we introduce the definition, theory, framework and major components of a green eco-environment as a key part of the AGD. We define a green eco-environment as including four key elements or measures: (1) a green ecoenvironmental indicator system; (2) environmental monitoring and warning networks; (3) emission standards and environmental thresholds for key pollutants; (4) emission controls and pollution remediation technologies. We have used Quzhou County (a typical county in the center of the North China Plain) as an example to show how detailed air, water and soil monitoring networks, as well as improved farmer practices and pollution control measures (especially ammonia emission mitigation and PM2.5 pollution reduction), can begin to create a green eco-environment in China and that AGD is possible. We conclude by stressing the need to improve the framework and practice for a green eco-environment, especially the importance of linking proposals and practices for a green eco-environment with the United Nations high priority Sustainable Development Goals

    A review of the design and clinical evaluation of the ShefStim array-based functional electrical stimulation system

    Get PDF
    Functional electrical stimulation has been shown to be a safe and effective means of correcting foot 12 drop of central neurological origin. Current surface-based devices typically consist of a single channel stimulator, 13 a sensor for determining gait phase and a cuff, within which is housed the anode and cathode. The cuff-mounted 14 electrode design reduces the likelihood of large errors in electrode placement, but the user is still fully responsible 15 for selecting the correct stimulation level each time the system is donned. Researchers have investigated different 16 approaches to automating aspects of setup and/or use, including recent promising work based on iterative learning 17 techniques. This paper reports on the design and clinical evaluation of an electrode array-based FES system for 18 the correction of drop foot, ShefStim. The paper reviews the design process from proof of concept lab-based study, 19 through modelling of the array geometry and interface layer to array search algorithm development. Finally, the 20 paper summarises two clinical studies involving patients with drop foot. The results suggest that the ShefStim 21 system with automated setup produces results which are comparable with clinician setup of conventional systems. 22 Further, the final study demonstrated that patients can use the system without clinical supervision. When used 23 unsupervised, setup time was 14 minutes (9 minutes for automated search plus 5 minutes for donning the 24 equipment), although this figure could be reduced significantly with relatively minor changes to the design

    Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest

    Get PDF
    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community

    Freshness and Reactivity Analysis in Globally Asynchronous Locally Time-Triggered Systems

    Get PDF
    International audienceCritical embedded systems are often designed as a set of real-time tasks, running on shared computing modules, and communicating through networks. Because of their critical nature, such systems have to meet timing properties. To help the designers to prove the correctness of their system, the real-time systems community has developed numerous approaches for analyzing the worst case times either on the processors (e.g. worst case execution time of a task) or on the networks (e.g. worst case traversal time of a message). However, there is a growing need to consider the complete system and to be able to determine end-to-end properties. Such properties apply to a functional chain which describes the behavior of a sequence of functions, not necessarily hosted on a shared module, from an input until the production of an output. This paper explores two end-to-end properties: freshness and reactivity, and presents an analysis method based on Mixed Integer Linear Programming (MILP). This work is supported by the French National Research Agency within the Satrimmap project
    • 

    corecore