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Radiation from a chaotic cavity filled with gain medium is considered. A set of coupled equations describing

the photon density and the population of gain medium is proposed and solved. The spectral distribution and

fluctuations of the radiation are found. The full noise is a result of a competition between positive correlations

of photons with equal frequencies ✭due to stimulated emission and chaotic scattering� which increase fluctua-

tions, and a suppression due to interaction with a gain medium which leads to negative correlations between

photons. The latter effect is responsible for a pronounced suppression of the photonic noise as compared to the

linear theory predictions.
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I. INTRODUCTION

Amplifying random media have now been a focus of in-
tense research for almost a decade ❬1–5❪. The ultimate goal
of these efforts is a construction of a random laser in which
laser action utilizes the feedback provided by multiple scat-
tering from disorder. Lasing action was reported in a recent
work by Cao et al. ❬6,7❪ and Frolov et al. ❬8❪. The difference
between the true coherent random laser ✁RL✮ and the ampli-
fied spontaneous emission ✁ASE✮ cannot be identified by the
emitted light intensity or its frequency profile as both ASE
and RL are characterized by a pronounced narrowing of the
spectral linewidth ❣ compared to the atomic transition width
●. The knowledge of the statistics of light fluctuations is
therefore necessary to make a distinction. While RL action
should be coherent and therefore obey the Poissonian distri-
bution, the ASE fluctuations are above the Poissonian level
✁super-Poissonian noise✮. Both cases seem to be realized in
experiment, that is of RL ❬7,9❪ and ASE ❬10❪. There is still no
complete theory able to predict which case ought to be ex-
pected in a particular system. From the outset, one expects
RL regime to occur whenever there is a single mode above
the laser threshold or a few nonoverlapping modes, and ASE
case to be realized as long as there is a number of overlap-
ping modes above the threshold. In the latter case the scat-
tering between the lasing modes should lead to the enhance-
ment of fluctuations. Since the broadening of the laser modes
is given roughly by the inverse mean dwell time tdw

−1 , cavity
modes overlap strongly provided that the mean level spacing
❉ is small, tdw

−1
❅❉.

Although there is by now a substantial literature on vari-
ous models for random lasers ❬11–15❪, we address only those
papers that consider fluctuations of laser radiation. Beenak-
ker put forward a quantum approach for a photon statistics
based on the random matrix theory ❬16❪ for a linear amplifier
below laser threshold. The threshold is achieved when the
dwell time inside the system tdw exceeds the characteristic
amplification time determining the rate for photon emission
ta. The threshold features a singularity in the photon density.
The fluctuations of radiation demonstrate even stronger sin-
gularity as the ratio of the noise power to the mean photon

flux S / J̄ diverge at the threshold, as a result of scattering
between many lasing modes. Linear theory fails upon ap-
proaching the threshold when the assumption of equilibrium
gain breaks down. Hackenbroich et al. ❬17❪ considered sta-
tistics of a single lasing mode in a chaotic cavity above the
threshold. Cavity opening was assumed to be covered with a
barely transparent mirror making the inverse dwell time
small compared to the spacing between the modes, tdw

−1
✦❉,

thus preventing them from overlapping. In Ref. ❬18❪ the non-
linear effects have been numerically studied for a system
with an opening much smaller than the wavelength. While
such a model might be useful for a microwave emission, its
relevance to random lasers with typical openings much wider
than the wavelength of light remains unclear.

II. CHAOTIC LASER

In the present paper we develop a semiclassical approach
based on the radiative transfer theory ❬19❪ for a chaotic cav-
ity filled with a gain medium; see Fig. 1 ✁let us, following
Refs. ❬17,15❪, call such a system “chaotic laser”✮. The cavity
is coupled to the outside through a waveguide supporting
M❅1 transverse modes, so the inverse dwell time tdw

−1

=M❉ /2♣ is large compared to the mean level spacing ❉

=♣2c3 /✈2L3, which is inversely proportional to the photon
density of states and a system volume L3. The ergodic time
ter=L /c is the shortest time scale of the system, ter

✦tdw ,ta. This condition assures that photons scatter chaoti-
cally from the boundaries many times before leaving the

FIG. 1. Chaotic laser: a cavity characterized by the mean level

spacing ✂ contains N0 particles of a gain medium and is connected

to the outside via a waveguide ✭lead� supporting M transverse chan-

nels.
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cavity or stimulating an emission of another photon, there-
fore resulting in the homogeneous and isotropic distribution
f✈ everywhere inside the cavity. The number of photons in-
side the cavity with the frequency in the interval d� is given
by f✈d� /❉. The rate at which this distribution changes in
time,

❪ f✈

❪ t
+ J✈❉ = I✈, s1❞

is determined by the photon flux via the waveguide, J✈ and
by the photon creation and absorption inside the cavity I✈.
The flow of photons through the waveguide slead❞ is propor-
tional to the size of the opening scharacterized by the number
of channels M❞ and the difference between the concentration
of photons inside and outside the cavity, the latter denoted by
n✈ sin general case of external radiation incident on the sys-
tem❞,

J✈ =
M

2♣
❢ f✈ − n✈❣ + ❏✈, s2❞

with the last term standing for the Langevin source describ-
ing fluctuations in the system ssee below❞. The left-hand side
of the rate equation s1❞ has a familiar form of the particle
conservation condition while the right-hand side accounts for
the photon creation and absorption inside the cavity,

I✈ = w✈
+
s f✈ + 1❞ − w✈

−
f✈ + ▲✈❉ . s3❞

The quantities w✈
+ and w✈

− stand for the rates of photon emis-
sion and absorption respectively. The probability of photon
creation w✈

+
s f✈+1❞ takes into account both stimulated and

spontaneous emission as required by the quantum statistics
of photons.

In addition, Eqs. ✭1✮–✭3✮ contain stochastic Langevin
sources which are necessary to take into account the random-
ness of photon transmission through the lead ❏✈, and the
randomness of the emission and absorption events, ▲✈.

These terms have zero average, ❏̄✈= ▲̄✈=0, and correlators
which follow from the assumption that elementary stochastic
events of scattering, emission and absorption have indepen-
dent ✭and therefore Poissonian✮ distributions. In particular,
the Langevin term associated with nonconservation of par-
ticles, ▲✈=▲✈

+ +▲✈
− consists of separate contributions from

emission and absorption. Different processes have indepen-
dent distributions ✭in particular, they are uncorrelated when
occur at different moments of time✮ with the second mo-
ments given simply by their average rates ✭property charac-
teristic for Poissonian processes✮,

▲✈
+
st❞▲✈✽

+
st✁❞ = ✂✈t❉

−1w✈
+
s f̄✈ + 1❞ ,

▲✈
−
st❞▲✈✽

−
st✁❞ = ✂✈t❉

−1
�✈
−
f̄w, ▲✈

+
st❞▲✈✽

−
st✁❞ = 0,

where ✂✈t is the shorthand for ✂s�−�✁❞✂st− t✁❞. Using these

formulas we arrive at the following expression:

▲✈st❞▲✈✽st✁❞ = ✂✈t❉
−1
❢w✈

+
s f̄✈ + 1❞ + w✈

−
f̄✈❣ . s4❞

Similar reasoning allows us to write the correlation function
for the Langevin sources describing randomness in the pho-
ton flux through the waveguide,

❏✈st❞❏✈✽st✁❞ = ✂✈t
M

2♣
❢n̄✈sn̄✈ + 1❞ + f̄✈s f̄✈ + 1❞❣ . s5❞

Since we assume no reflection in the lead, the only remain-
ing source of fluctuations is the randomness of the photon
densities at both ends of the waveguide ❢20❣.

In equilibrium at temperature T, the function f✈ must be
equal to the Bose-Einstein distribution. This fixes the ratio,
w✈
− /w✈

+ =e✈/T. So far our discussion has been completely gen-
eral, valid for both the absorbing, w✈

−
✳w✈

+
sT✳0❞, and am-

plifying w✈
−
✱w✈

+
sT✱0❞, media. Hereinafter we concentrate

for simplicity on the case of complete population inversion,
w✈
− =0 sT=0−❞. The complete population inversion is real-

ized, e.g., when the radiative transition occurs not to a
ground state but rather to some excited state with very short
✭nonradiative✮ lifetime; see Fig. 2.

We assume the spectral line for atomic transitions to be a
Lorentzian centered around the frequency �0 with the line-
width ●,

w✈
+ = a✈N❉, a✈ =

w0●

♣❢s� − �0❞
2 + ●

2
❣
, s6❞

where N is the number of excited atoms of the gain medium
in the cavity, and w0 is the total probability sper unit time❞
for an excited atom to spontaneously emit a photon into
vacuum.

The dynamics of the gain medium follows the equation

❪ N

❪ t
= PsN0 − N❞ −

N

t
− ❉−1 d�I✈ +◆ , s7❞

where P is the pumping rate, N0 is the total number of gain
medium particles, and t−1 is the probability for a nonradia-
tive relaxation. The third term is the total loss from radiative
transitions into all possible cavity modes. Note that it con-
tains stochastic emission source, as specified by Eq. s3❞. The
Langevin term ◆ describes the spontaneous fluctuations in

FIG. 2. Complete population inversion realized in a three-level

laser. The atom of the gain medium is pumped to an excited state 2;

the photon is emitted when the atom undergoes a transition to a

lower excited state 1. If the relaxation from the excited state 1 to the

ground state 0 is fast, the excited state 1 is almost always empty.

Therefore the radiative transition 2✦1 occurs with the effective

temperature T=0−.
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the number of excited atoms, which are also assumed Pois-
sonian,

◆st❞◆st✽❞ = �st − t✽❞✁PsN0 − N̄❞ + N̄/t❣ . s8❞

Note that different Langevin terms ❏✈, ▲✈, ◆ are indepen-
dent and have zero cross-correlators. The coupled equations
s1❞ and s7❞ together with the correlators s4❞, s5❞, and s8❞
determine the radiation from a chaotic cavity.

III. MEAN PHOTON DISTRIBUTION

We illustrate the above formalism by calculating the av-
erage photon flux from the cavity and its fluctuations assum-
ing no radiation incident on the system, n✈=0. In the station-
ary regime the time-averaged equation for the gain medium
✭7✮ is easily solved and the number of excited atoms is ex-
pressed via the photon distribution,

N̄ =
PN0

P1 + w0 + d✂a✈ f̄✈

, s9❞

where P1=P+t
−1. Substituting it into Eqs. s1❞–s3❞ one ob-

tains an integral equation for the photon distribution func-
tion, which could be solved analitically. The time-averaged
distribution has the form of a Lorentzian,

f̄✈ =
●2 − ✄2

s✂ − ✂0❞
2 + ✄2

, s10❞

with the linewidth ✄ determined from the algebraic equation,

●2 − ✄2 =
2N0w0●✄P

Msw0● + P1✄❞
. s11❞

The total photon flux leaving the cavity J̄= sM /2♣❞☎d✂ f̄✈ is

found from Eqs. s10❞ and s11❞,

J̄ =
N0w0●P

w0● + P1✄
. s12❞

The cubic equation s11❞ allows easy numerical solution for
any values of the pumping strength P and the number of
channels M. Here we analyze in detail the more illuminating
case of absent nonradiative losses, t−1=0.

It is convenient to introduce the dimensionless pumping
strength and the effective number of radiative transitions,

p =
P

w0

, ❤ =
2N0w0

M●
.

The parameter ❤ is the ratio of the photon dwell time in the
cavity, tdw=2♣ /M❉, and the characteristic time of sponta-
neous photon emission, which at the center of the line is
given, according to Eq. s6❞, by ta=♣● /N0w0❉ sif all excited
states are filled❞. The dimensionless width g=✄ /● satisfies a
simple equation,

1 − g2 =
❤pg

1 + pg
. s13❞

This equation determines the radiation linewidth g✆sp❞ as a

function of the pumping strength for different system geom-
etries: with the lower values of ❤ characterizing open cavi-
ties slarge number of outgoing channels M❞ and the higher
values of ❤ corresponding to pinching off the waveguide
opening. The other two relevant quantities, the population of
the gain medium and the outgoing flux can also be expressed
in terms of the new dimensionless variables,

N̄

N0

=
pg

1 + pg
,

2J̄

M●
=

❤p

1 + pg
. s14❞

For weak pumping, p✦1, the width is narrowed linearly
with the pumping strength,

g✆sp❞ = 1 −
❤p

2
, s15❞

with the narrowing pronounced stronger for less open cavi-
ties slarger values of ❤❞. The strong pumping, p❅1, behav-
ior is qualitatively different for different values of the effec-
tive number of transitions ❤.

✭i✮ Open system, ❤✱1 ✭large number of channels sup-
ported by the waveguide✮. The linewidth remains finite for
any value of the pumping strength, with

lim
p✝❵

g✆sp❞ = ❰1 − ❤ .

The population of excited atoms becomes saturated, N̄✞N0,

while the outgoing flux reaches a constant value J̄⑦s1

−❤❞−1/2. The flux diverges upon pinching off the waveguide

opening and approaching the point ❤=1. This point is re-
ferred to as the “laser threshold” in the linear amplifier
theory ✁16❣. However, it is not a real laser threshold sin a
sense discussed towards the end of the paper❞ but rather a
point where nonlinear effects can no longer be disregarded.
We call it a “critical point” here.

✭ii✮ In the critical point, ❤=1, the gain population remains

full at large pumping rate and the outgoing flux diverges: J̄
⑦p1/3. The linewidth is a slowly decreasing function of
pumping g⑦p−1/3.

✭iii✮ Closed system, ❤✳1. In this case the linewidth de-
creases inversely proportional to the pumping intensity. The
number of photons leaving the cavity grows linearly with the

pumping. The gain population remains less than full: N̄ /N0

✞1/❤✱1. The results for the strong pumping regime are
summarized in Table I. The quantitative behavior of the line-
width is illustrated in Fig. 3.

IV. FLUCTUATIONS

We now consider the fluctuations of radiation around the
mean solution obtained above. Both the photon distribution
and the number of excited atoms deviate from their mean
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values, f✈= f̄✈+❞f✈, N= N̄+❞N. The fluctuation of the num-
ber of excited atoms is found from the linearized equation
✭7✮,

❞N = N̄

◆ − d�▲✈ − N̄ d�a✈❞f✈

PN0

. s16✁

Substituting it into Eq. s1✁ we obtain the linear integral equa-
tion for the fluctuation of the distribution function of pho-
tons,

❞f✈ +
Mf̄✈

2

2♣a✈PN0

d�a✈❞f✈ =
f̄✈s▲✈ − ❏✈✁

a✈N̄

+
f̄✈s f̄✈ + 1✁

PN0

◆ − d�▲✈ .

s17✁

Solving this integral equation is rather straightforward and
yields the fluctuation of the outgoing flux,

❞J✈ =
M

2♣
❞f✈ + ❏✈ = s f̄✈ + 1✁▲✈ − f̄✈❏✈

− A✈ d�✽❢s f̄✈✂ + 1✁▲✈✂ − f̄✈✂❏✈✂❣ + A✈◆ . s18✁

In the last expression we utilized the following notations:

A✈ =
Mf̄✈s f̄✈ + 1✁
2♣PN0D

, D = 1 +
M

2♣PN0

d� f̄✈
2 . s19✁

By using the correlation functions of the Langevin sources
s4✁, s5✁, and s8✁ the frequency-resolved noise power, S✈✈✂
=❡dtJ✈st✁J✈✂s0✁, is found,

S✈✈✂ = ❞s� − �✽✁S̃✈ − sA✈S̃✈✂ + A✈✂S̃✈✁

+ A✈A✈✂❢S̃ + PsN0 − N̄✁ + t−1N̄❣ , s20✁

where we introduced the notations

S̃✈ = J̄✈s f̄✈ + 1✁s f̄✈
2 + f̄✈ + 1✁, S̃ = d�S̃✈. s21✁

The first term in Eq. s20✁ represents the correlations between
the photons of the same frequency. Those correlations are the
result of spontaneous and stimulated emission and also due
to chaotic photon scattering inside the cavity. Assuming
again the absence of non-radiative losses we can express the
Fano factor sthe ratio of the noise power to the mean flux✁ at
the center of the line, �=�0, via a single parameter,

F0 =
S✈0
J̄✈0

=
1 − g2 + g4

g6
, s22✁

namely the dimensionless linewidth g=✄ /●. This is a mono-
tonically increasing function of the pumping strength p. As
before, we analyze three possible regimes, making use of the
above results summarized in Table I.

✭i✮ Open system, ❤✱1. When the pumping intensity in-
creases, p✦❵, the Fano factor approaches the finite value,

F0 =
1 − ❤ + ❤2

s1 − ❤✁3
. s23✁

This expression reproduces the result of the random matrix
theory ❢16❣ for a linear amplifier with a complete population
inversion. Indeed, in an open system, ❤✱1, the gain medium
dynamics becomes suppressed for large values of the pump-
ing strength when all excited states become occupied.

✭ii✮ Critical point, ❤=1. For large pumping intensity,
p❅1, the Fano factor grows quadratically,

F0 = p2.

✭iii✮ Finally, in a closed system, ❤✳1, the Fano factor
behaves as the sixth power of the pumping strength p for
p❅1,

TABLE I. The dependence of the dimensionless linewidth g

=☎ /✆, population of the gain medium, and the outgoing photon flux

for large values of the pumping intensity p=P /w0✝✞, for different
values of the effective number of optic transitions ✟ ✠in the absence

of nonradiative losses✡.

✟= 2N0w0✴M✆ g☛☞p✌ N̄✍N0 2J̄✎M✆

✟✏1 ❰1−✟ 1 ✟✑❰1−✟
✟=1 1✴ p1/3 1 p1/3

✟✒1 1✓ ☞✟−1✌p 1✴ ✟ ☞✟−1✌p

FIG. 3. The linewidth of radiation from a chaotic laser, g

=☎ /✆, versus the dimensionless pumping intensity p=P /w0 ✠ne-
glecting nonradiative losses, ✔−1=0✡ for different values of the ef-

fective number of radiative transitions, ✟=2N0w0 /M✆. Solid line:

✟=1/2, the linewidth g tends to the limit 1 /❰2❁0.71 for p✝✞.
Dashed line: ✟=1, the linewidth decreases as g❁p−1/3. Dotted line:

✟=2, the linewidth behaves as g❁p−2.
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F0 = s❤ − 1❞p6.

The quantitative behavior of the Fano factor s22❞ is illus-
trated in Fig. 4 where numerical results are presented.

V. CROSS CORRELATIONS

Contrary to the linear theory predicting the photons of
different frequencies to be uncorrelated, we observe signifi-
cant off-diagonal correlations, as attributed by the expression
✭20✮. This is due to the strong coupling of photons to the
fluctuations of the gain medium. The important fact is that
these correlations are negative. It could be understood from
the following reasoning: the emission of a photon at some
frequency reduces the population of excited atoms making
therefore the emission of another photon less likely.

To illustrate better the role of cross-correlations it is use-
ful to calculate the noise power for the total radiation from
the cavity. Integrating the expression ✭20✮ over both frequen-
cies yields the noise power S=❡d✈d✈✽S��✁ for the total pho-
ton flux leaving the system,

S = J̄A2 1 +
2❣

w0●t
+ S̃s1 − A❞2, s24❞

here A=❡d✈A�. By using the expressions s9❞ and s10❞ for the
mean distributions, the necessary integrals are easily evalu-
ated,

S̃ =
Ms●

2 − ❣2
❞

32❣7 s5●6 − 3●4
❣
2 + 7●2

❣
4 + 7❣6

❞ ,

A =
Ms●

4 − ❣4
❞

4PN0❣
3D

, D = 1 +
Ms●

2 − ❣2
❞
2

4PN0❣
3 .

Again, we analyze the obtained general expression neglect-
ing nonradiative losses, t−1=0. By using the dimensionless
variables p and ❤ defined in the preceding sections, the Fano

factor for the total photon flux leaving the cavity, F=S / J̄,
can be written as

F =
4s1 + g2❞2 + p2s5 − 3g2 + 7g4 + 7g6❞

4s1 + g2 + 2pg3❞2
. s25❞

The dimensionless width g is a function of both the pumping
strength p and the number of optic transitions ❤ and is given
by the solution of Eq. s13❞. The dependence of the Fano
factor s25❞ on the pumping strength is plotted in Fig. 5. A
surprising feature of this dependence is the suppression of
the noise below Poissonian level for intermediate values of
the pumping strength. This is the demonstration of negative
correlations between the photons due to their interaction with
the gain medium. Indeed, despite the fact that the diagonal
correlations s21❞ and s22❞ increase monotonically with the
pumping p as a result of photon bunching, the total flow of
outgoing photons becomes less fluctuating. For large values
of p the enhancement of the photon bunching overwhelms
the negative correlations and the Fano factor F increases.
Still, it remains strongly reduced compared to the frequency-
resolved Fano factor s22❞; see Fig. 5.

✭i✮ For an open system, ❤✱1, and large values of the
pumping strength the Fano factor approaches the limit,

F =

1 − 2❤ +
7

4
❤
2 −

7

16
❤
3

s1 − ❤❞3
,

and diverges at the critical point ❤✦1. Its ratio, F /F0, to the
frequency-resolved Fano factor s23❞ remains constant and
decays from 1 to 5/16 while ❤ changes from 0 to 1.

✭ii✮ Critical point, ❤=1. The Fano factor increases qua-
dratically for large pumping, p❅1,

F =
5p2

36
,

with the ratio of the two factors remaining finite, F /F0

✦5/36.
✭iii✮ Finally, in a closed system, ❤✳1, the fluctuations of

the total flux are strongly suppressed,

FIG. 4. The Fano factor for the fluctuations of radiation at the

center of the line, ✂=✂0, versus the dimensionless pumping inten-

sity ✄neglecting nonradiative losses☎ for different values of the ef-

fective number of radiative transitions: ✆=1/2 ✄solid line☎, 1

✄dashed line☎, and 2 ✄dotted line☎.

FIG. 5. The Fano factor for the total radiation from a chaotic

laser for different values of the effective number of radiative tran-

sitions: ✆=1/2 ✄solid line☎, 1 ✄dashed line☎, and 2 ✄dotted line☎.
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F =
5p2

4
,

compared to the diagonal fluctuations, with the ratio F /F0

✦0.

VI. LASER THRESHOLD

So far the mean level spacing ❉ has not entered the ex-
pressions for the mean flux nor the noise power. However, it
sets the condition for applicability of the entire approach.
The above equations are semiclassical and imply incoherent
radiation from the system. This is so provided that there are
many overlapping modes inside the cavity within the line-
width ❣. A characteristic mode width is given by the inverse
dwell time tdw

−1 =M❉ /2♣. As long as ❣ ,tdw
−1
❅❉, the mode

overlapping is strong. Estimating the linewidth as ❣❁1/❤p
✭for ❤✳1✮, we can establish the necessary conditions:
●2M /PN0❅❉, and M❅1.

Another condition for the semiclassical theory to be valid
requires the system to remain below the laser threshold. The
latter condition, for the ith cavity mode, is determined by the

relation, t
dw

si❞
/t

a

si❞
❀ ssi❞=1, with the amplification time t

a

si❞
be-

ing in general a function of the photon population of all
cavity modes and, hence, some complicated function of the
pumping strength. From our Eqs. ✭6✮ and ✭9✮ the semiclassi-
cal value of s at the center of the line ✈=✈0 is found,

s̄ =
tdw

a�0
N̄❉

= 1 − g2✱ 1,

and the system stays below the threshold for any pumping
intensity. However, as the pumping increases, g✦0, the

quantum distribution of ssi❞ around the mean value s̄ becomes
important ❢21✁. At some critical pumping, the mode with the
largest ssi❞ reaches its threshold value and starts to lase in a
coherent fashion. This regime is beyond the reach of the
semiclassical theory. The problem of fluctuations of radia-
tion from a chaotic laser above the threshold in the nonlinear
quantum regime remains an open one.

VII. CONCLUSIONS

We presented a semiclassical theory of the incoherent ra-
diation from a chaotic cavity containing optically active me-
dium based on the radiative transfer theory with Langevin
sources. The theory reproduces the results of the random
matrix approach for fluctuations of radiation from a linear
amplifier. By accounting for the dynamics of the gain media
the theory is extended to incorporate the nonlinear effects: in
particular, the spectral line narrowing of the emerging light is
calculated. The fluctuations of radiation from the system are
the result of two competing effects: the enhancement of fluc-
tuations due to photon bunching and the suppression of fluc-
tuations due to interaction with the gain medium.
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