228 research outputs found

    Mg II ABSORPTION AT 2 < z < 6 WITH MAGELLAN/FIRE. II. A LONGITUDINAL STUDY OF HI, METALS, AND IONIZATION IN GALACTIC HALOS

    Get PDF
    We present a detailed study of H I and metals for 110 Mg II absorption systems discovered at 1.98 12 Gyr). We observe a significant strengthening in the characteristic N(H I) for fixed Mg II equivalent width as one moves toward higher redshift. Indeed, at our sample's mean [bar over z] = 3.402, all Mg II systems are either damped Lyα absorbers (DLAs) or sub-DLAs, with 40.7% of systems exceeding the DLA threshold (compared to 16.7% at [bar over z] = 0.927). We set lower limits on the metallicity of the Mg II systems where we can measure H I; these results are consistent with the full DLA population. The classical Mg II systems (W[λ2796 over 0] = 0.3-1.0 A), which preferentially associate with sub-DLAs, are quite metal rich at ~0.1 solar. We applied quantitative classification metrics to our absorbers to compare with low-redshift populations, finding that weak systems are similar to classic Mg II absorbers at low redshift. The strong systems either have very large Mg II and Fe II velocity spreads implying non-virialized dynamics or are more quiescent DLAs. There is tentative evidence that the kinetically complex systems evolve in similar fashion to the global star formation rate. We speculate that if weaker Mg II systems represent accreting gas as suggested by recent studies of galaxy-absorber inclinations, then their high metal abundance suggests re-accretion of recently ejected material rather than first-time infall from the metal-poor intergalactic medium, even at early times.National Science Foundation (U.S.) (Grant AST-0908920)National Science Foundation (U.S.) (Grant AST-1109115)Massachusetts Institute of Technology. Undergraduate Research Opportunities Progra

    Precious Metals in SDSS Quasar Spectra. II. Tracking the Evolution of Strong, 0.4 < z < 2.3 Mg II Absorbers with Thousands of Systems

    Get PDF
    We have performed an analysis of over 34,000 Mg II doublets at 0.36 < z < 2.29 in Sloan Digital Sky Survey (SDSS) Data Release 7 quasar spectra; the catalog, advanced data products, and tools for analysis are publicly available. The catalog was divided into 14 small redshift bins with roughly 2500 doublets in each and from Monte Carlo simulations, we estimate 50% completeness at rest equivalent width W_r ≈ 0.8 Å. The equivalent width frequency distribution is described well by an exponential model at all redshifts, and the distribution becomes flatter with increasing redshift, i.e., there are more strong systems relative to weak ones. Direct comparison with previous SDSS Mg II surveys reveals that we recover at least 70% of the doublets in these other catalogs, in addition to detecting thousands of new systems. We discuss how these surveys came by their different results, which qualitatively agree but because of the very small uncertainties, differ by a statistically significant amount. The estimated physical cross section of Mg II-absorbing galaxy halos increased approximately threefold from z = 0.4 to z = 2.3, while the W_r ≄ 1 Å absorber line density, dN_(Mg II)/dX, grew by roughly 45%. Finally, we explore the different evolution of various absorber populations—damped Lyα absorbers, Lyman limit systems, strong C IV absorbers, and strong and weaker Mg II systems—across cosmic time (0 < z < 6)

    Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP.

    Get PDF
    Subversion of endoplasmic reticulum (ER) function is a feature shared by multiple intracellular bacteria and viruses, and in many cases this disruption of cellular function activates pathways of the unfolded protein response (UPR). In the case of infection with Brucella abortus, the etiologic agent of brucellosis, the unfolded protein response in the infected placenta contributes to placentitis and abortion, leading to pathogen transmission. Here we show that B. abortus infection of pregnant mice led to death of infected placental trophoblasts in a manner that depended on the VirB type IV secretion system (T4SS) and its effector VceC. The trophoblast death program required the ER stress-induced transcription factor CHOP. While NOD1/NOD2 expression in macrophages contributed to ER stress-induced inflammation, these receptors did not play a role in trophoblast death. Both placentitis and abortion were independent of apoptosis-associated Speck-like protein containing a caspase activation and recruitment domain (ASC). These studies show that B. abortus uses its T4SS to induce cell-type-specific responses to ER stress in trophoblasts that trigger placental inflammation and abortion. Our results suggest further that in B. abortus the T4SS and its effectors are under selection as bacterial transmission factors.IMPORTANCE Brucella abortus infects the placenta of pregnant cows, where it replicates to high levels and triggers abortion of the calf. The aborted material is highly infectious and transmits infection to both cows and humans, but very little is known about how B. abortus causes abortion. By studying this infection in pregnant mice, we discovered that B. abortus kills trophoblasts, which are important cells for maintaining pregnancy. This killing required an injected bacterial protein (VceC) that triggered an endoplasmic reticulum (ER) stress response in the trophoblast. By inhibiting ER stress or infecting mice that lack CHOP, a protein induced by ER stress, we could prevent death of trophoblasts, reduce inflammation, and increase the viability of the pups. Our results suggest that B. abortus injects VceC into placental trophoblasts to promote its transmission by abortion

    Halo Masses of MgII absorbers at z ~ 0.5 from SDSS DR7

    Get PDF
    We present the cross-correlation function of MgII absorbers with respect to a volume-limited sample of luminous red galaxies (LRGs) at z = 0.45 - 0.60 using the largest MgII absorber sample and a new LRG sample from SDSS DR7. We present the clustering signal of absorbers on projected scales r_p = 0.3 - 35 h^(-1) Mpc in four W^(λ2796)_r bins spanning W^(λ2796)_r = 0.4 - 5.6Å. We found that on average Mg II absorbers reside in halos (log M_h) ≈ 12.1, similar to the halo mass of an L_* galaxy. We report that the weakest absorbers in our sample with W^(λ2796)_r = 0.4-1.1Å reside in relatively massive halos with (log M_h) ≈ 12.5^(+0.6)_(-1.3), while stronger absorbers reside in halos of similar or lower masses (log M_h) 11.6^(+0.9). We compared our bias data points, b, and the frequency distribution function of absorbers, f_W_r, with a simple model incorporating an isothermal density profile to mimic the distribution of absorbing gas in halos. We also compared the bias data points with Tinker & Chen (2008) who developed halo occupation distribution models of Mg II absorbers that are constrained by b and f_W_r. The simple isothermal model can be ruled at a ≈ 2.8σ level mostly because of its inability to reproduce f_W_r. However, b values are consistent with both models, including TC08. In addition, we show that the mean b of absorbers does not decrease beyond W^(λ2796)_r ≈ 1.6Å. The flat or potential upturn of b for W^(λ2796)-r ≳ 1.6Å absorbers suggests the presence of additional cool gas in massive halos

    Halo masses of Mg ii absorbers at z∌ 0.5 from Sloan Digital Sky Survey Data Release 7

    Get PDF
    We present the cross-correlation function of Mg ii absorbers with respect to a volume-limited sample of luminous red galaxies (LRGs) at z = 0.45–0.60 using the largest Mg ii absorber sample and a new LRG sample from Sloan Digital Sky Survey Data Release 7. We present the clustering signal of absorbers on projected scales r_p = 0.3-35 h^(−1) Mpc in four W^(λ2796)_(r) bins spanning W^(λ2796)_(r) =0.4−5.6 Å. We found that on average Mg ii absorbers reside in haloes 〈log Mh〉 ≈ 12.1, similar to the halo mass of an L_* galaxy. We report that the weakest absorbers in our sample with W^(λ2796)_(r)=0.4−1.1 Å reside in relatively massive haloes with ⟹logM_h⟩≈12.5+0.6−1.3, while stronger absorbers reside in haloes of similar or lower masses 〈log M_h〉 ≈ 11.6+ 0.9. We compared our bias data points, b, and the frequency distribution function of absorbers, fW_r, with a simple model incorporating an isothermal density profile to mimic the distribution of absorbing gas in haloes. We also compared the bias data points with Tinker & Chen who developed halo occupation distribution models of Mg ii absorbers that are constrained by b and fW_r. The simple isothermal model can be ruled at a ≈2.8σ level mostly because of its inability to reproduce fW_r. However, b values are consistent with both models, including Tinker & Chen. In addition, we show that the mean b of absorbers does not decrease beyond W^(λ2796)_(r)≈1.6 Å. The flat or potential upturn of b for W^(λ2796)_(r)≳1.6 Å absorbers suggests the presence of additional cool gas in massive haloes

    Characterizing the gamma-ray long-term variability of PKS 2155-304 with H.E.S.S. and Fermi-LAT

    Get PDF
    Studying the temporal variability of BL Lac objects at the highest energies provides unique insights into the extreme physical processes occurring in relativistic jets and in the vicinity of super-massive black holes. To this end, the long-term variability of the BL Lac object PKS 2155-304 is analyzed in the high (HE, 100 MeV 200 GeV) gamma-ray domain. Over the course of ~9 yr of H.E.S.S observations the VHE light curve in the quiescent state is consistent with a log-normal behavior. The VHE variability in this state is well described by flicker noise (power-spectral-density index {\ss}_VHE = 1.10 +0.10 -0.13) on time scales larger than one day. An analysis of 5.5 yr of HE Fermi LAT data gives consistent results ({\ss}_HE = 1.20 +0.21 -0.23, on time scales larger than 10 days) compatible with the VHE findings. The HE and VHE power spectral densities show a scale invariance across the probed time ranges. A direct linear correlation between the VHE and HE fluxes could neither be excluded nor firmly established. These long-term-variability properties are discussed and compared to the red noise behavior ({\ss} ~ 2) seen on shorter time scales during VHE-flaring states. The difference in power spectral noise behavior at VHE energies during quiescent and flaring states provides evidence that these states are influenced by different physical processes, while the compatibility of the HE and VHE long-term results is suggestive of a common physical link as it might be introduced by an underlying jet-disk connection.Comment: 11 pages, 16 figure

    Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3

    Full text link
    Context. Recently, the high-energy (HE, 0.1-100 GeV) Îł\gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic Îł\gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) Îł\gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Energy spectra are obtained for the orbit-averaged data set, and for the orbital phase bin around the VHE maximum. Results. VHE Îł\gamma-ray emission is detected with a statistical significance of 6.4 σ\sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1−101-10 TeV energy range is (1.4±0.2)×1035(1.4 \pm 0.2) \times 10^{35} erg/s. A luminosity of (5±1)×1035(5 \pm 1) \times 10^{35} erg/s is reached during 20% of the orbit. HE and VHE Îł\gamma-ray emissions are anti-correlated. LMC P3 is the most luminous Îł\gamma-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&

    Detailed spectral and morphological analysis of the shell type SNR RCW 86

    Full text link
    Aims: We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW~86 and for insights into the production mechanism leading to the RCW~86 very high-energy gamma-ray emission. Methods: We analyzed High Energy Spectroscopic System data that had increased sensitivity compared to the observations presented in the RCW~86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1~keV X-ray band, the 2-5~keV X-ray band, radio, and gamma-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results:We present the first conclusive evidence that the TeV gamma-ray emission region is shell-like based on our morphological studies. The comparison with 2-5~keV X-ray data reveals a correlation with the 0.4-50~TeV gamma-ray emission.The spectrum of RCW~86 is best described by a power law with an exponential cutoff at Ecut=(3.5±1.2stat)E_{cut}=(3.5\pm 1.2_{stat}) TeV and a spectral index of Γ\Gamma~1.6±0.21.6\pm 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW~86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to ∌\sim0.1\% of the initial kinetic energy of a Type I a supernova explosion. When using a hadronic model, a magnetic field of BB~100ÎŒ\muG is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E−2^{-2} spectrum for the proton distribution cannot describe the gamma-ray data. Instead, a spectral index of Γp\Gamma_p~1.7 would be required, which implies that ~7×1049/ncm−37\times 10^{49}/n_{cm^{-3}}erg has been transferred into high-energy protons with the effective density ncm−3=n/1n_{cm^{-3}}=n/ 1 cm^-3. This is about 10\% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1~cm^-3.Comment: accepted for publication by A&
    • 

    corecore