3 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity

    No full text
    Adrenomedullin (AM) is a peptide involved both in the pathogenesis of cardiovascular diseases and in circulatory homeostasis. The high-affinity AM receptor is composed of receptor activity–modifying protein 2 or 3 (RAMP2 or -3) and the GPCR calcitonin receptor–like receptor. Testing our hypothesis that RAMP2 is a key determinant of the effects of AM on the vasculature, we generated and analyzed mice lacking RAMP2. Similar to AM–/– embryos, RAMP2–/– embryos died in utero at midgestation due to vascular fragility that led to severe edema and hemorrhage. Vascular ECs in RAMP2–/– embryos were severely deformed and detached from the basement membrane. In addition, the abnormally thin arterial walls of these mice had a severe disruption of their typically multilayer structure. Expression of tight junction, adherence junction, and basement membrane molecules by ECs was diminished in RAMP2–/– embryos, leading to paracellular leakage and likely contributing to the severe edema observed. In adult RAMP2+/– mice, reduced RAMP2 expression led to vascular hyperpermeability and impaired neovascularization. Conversely, ECs overexpressing RAMP2 had enhanced capillary formation, firmer tight junctions, and reduced vascular permeability. Our findings in human cells and in mice demonstrate that RAMP2 is a key determinant of the effects of AM on the vasculature and is essential for angiogenesis and vascular integrity
    corecore