290 research outputs found

    Investigation of new concepts of adaptive devices Quarterly technical report, 15 Sep. - 14 Dec. 1967

    Get PDF
    Charge storage behavior of multiple layer etched silicon semiconductor devic

    Targeting the EGFR in ovarian cancer with the tyrosine kinase inhibitor ZD1839 (“Iressa”).

    Get PDF
    The modulating effects of the orally active epidermal growth factor receptor-specific tyrosine kinase inhibitor ZD 1839 (‘Iressa’) on cell growth and signalling were evaluated in four ovarian cancer cell lines (PE01, PE04, SKOV-3, OVCAR-5) that express the epidermal growth factor receptor, and in A2780, which is epidermal growth factor receptor-negative. Transforming growth factor-α stimulated growth was completely inhibited by concentrations of ZD 1839 ⩾0.3 μM in the epidermal growth factor receptor-expressing cell lines, as were transforming growth factor-α stimulated phosphorylation of the epidermal growth factor receptor and downstream components of the MAP kinase and PI-3 kinase signalling cascades. Growth inhibition in the absence of added transforming growth factor-α was also observed which could be consistent with suppression of action of autocrine epidermal growth factor receptor-activating ligands by ZD 1839. In support of this, transforming growth factor-α, EGF and amphiregulin mRNAs were detected by RT–PCR in the epidermal growth factor receptor-expressing cell lines. ZD 1839 inhibited growth of the PE04 ovarian cancer xenograft at 200 mg kg(−1) day(−1). These data lend further support to the view that targeting the epidermal growth factor receptor in ovarian cancer could have therapeutic benefit. British Journal of Cancer (2002) 86, 456–462. DOI: 10.1038/sj/bjc/6600058 www.bjcancer.com © 2002 The Cancer Research Campaig

    Entrepreneurial sons, patriarchy and the Colonels' experiment in Thessaly, rural Greece

    Get PDF
    Existing studies within the field of institutional entrepreneurship explore how entrepreneurs influence change in economic institutions. This paper turns the attention of scholarly inquiry on the antecedents of deinstitutionalization and more specifically, the influence of entrepreneurship in shaping social institutions such as patriarchy. The paper draws from the findings of ethnographic work in two Greek lowland village communities during the military Dictatorship (1967–1974). Paradoxically this era associated with the spread of mechanization, cheap credit, revaluation of labour and clear means-ends relations, signalled entrepreneurial sons’ individuated dissent and activism who were now able to question the Patriarch’s authority, recognize opportunities and act as unintentional agents of deinstitutionalization. A ‘different’ model of institutional change is presented here, where politics intersects with entrepreneurs, in changing social institutions. This model discusses the external drivers of institutional atrophy and how handling dissensus (and its varieties over historical time) is instrumental in enabling institutional entrepreneurship

    Dopamine Modulates the Rest Period Length without Perturbation of Its Power Law Distribution in Drosophila melanogaster

    Get PDF
    We analyzed the effects of dopamine signaling on the temporal organization of rest and activity in Drosophila melanogaster. Locomotor behaviors were recorded using a video-monitoring system, and the amounts of movements were quantified by using an image processing program. We, first, confirmed that rest bout durations followed long-tailed (i.e., power-law) distributions, whereas activity bout durations did not with a strict method described by Clauset et al. We also studied the effects of circadian rhythm and ambient temperature on rest bouts and activity bouts. The fraction of activity significantly increased during subjective day and at high temperature, but the power-law exponent of the rest bout distribution was not affected. The reduction in rest was realized by reduction in long rest bouts. The distribution of activity bouts did not change drastically under the above mentioned conditions. We then assessed the effects of dopamine. The distribution of rest bouts became less long-tailed and the time spent in activity significantly increased after the augmentation of dopamine signaling. Administration of a dopamine biosynthesis inhibitor yielded the opposite effects. However, the distribution of activity bouts did not contribute to the changes. These results suggest that the modulation of locomotor behavior by dopamine is predominantly controlled by changing the duration of rest bouts, rather than the duration of activity bouts

    Human blood autoantibodies in the detection of colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is the second most common malignancy in the western world. Early detection and diagnosis of all cancer types is vital to improved prognosis by enabling early treatment when tumours should be both resectable and curable. Sera from 3 different cohorts; 42 sera (21 CRC and 21 matched controls) from New York, USA, 200 sera from Pittsburgh, USA (100 CRC and 100 controls) and 20 sera from Dundee, UK (10 CRC and 10 controls) were tested against a panel of multiple tumour-associated antigens (TAAs) using an optimised multiplex microarray system. TAA specific IgG responses were interpo- lated against the internal IgG standard curve for each sample. Individual TAA specific responses were examined in each cohort to determine cutoffs for a robust initial scoring method to establish sensitivity and specificity. Sensitivity and specificity of combinations of TAAs provided good discrimination between cancer-positive and normal serum. The overall sensitivity and specificity of the sample sets tested against a panel of 32 TAAs were 61.1% and 80.9% respectively for 6 antigens; p53, AFP, K RAS, Annexin, RAF1 and NY-CO16. Furthermore, the observed sensitivity in Pittsburgh sample set in different clinical stages of CRC;stageI(n=19),stageII(n=40),stageIII(n=34)andstageIV(n=6)wassimilar (73.6%, 75.0%, 73.5% and 83.3%, respectively), with similar levels of sensitivity for right and left sided CRC. We identified an antigen panel of sufficient sensitivity and specificity for early detection of CRC, based upon serum profiling of autoantibody response using a robust multiplex antigen microarray technology. This opens the possibility of a blood test for screening and detection of early colorectal cancer. However this panel will require further validation studies before they can be proposed for clinical practice

    Folic Acid Exposure Rescues Spina Bifida Aperta Phenotypes in Human Induced Pluripotent Stem Cell Model

    Get PDF
    Neural tube defects (NTDs) are severe congenital abnormalities, caused by failed closure of neural tube during early embryonic development. Periconceptional folic acid (FA) supplementation greatly reduces the risk of NTDs. However, the molecular mechanisms behind NTDs and the preventive role of FA remain unclear. Here, we use human induced pluripotent stem cells (iPSCs) derived from fetuses with spina bifida aperta (SBA) to study the pathophysiology of NTDs and explore the effects of FA exposure. We report that FA exposure in SBA model is necessary for the proper formation and maturation of neural tube structures and robust differentiation of mesodermal derivatives. Additionally, we show that the folate antagonist methotrexate dramatically affects the formation of neural tube structures and FA partially reverts this aberrant phenotype. In conclusion, we present a novel model for human NTDs and provide evidence that it is a powerful tool to investigate the molecular mechanisms underlying NTDs, test drugs for therapeutic approaches

    Efficacy of a Non-Hypercalcemic Vitamin-D2 Derived Anti-Cancer Agent (MT19c) and Inhibition of Fatty Acid Synthesis in an Ovarian Cancer Xenograft Model

    Get PDF
    BACKGROUND:Numerous vitamin-D analogs exhibited poor response rates, high systemic toxicities and hypercalcemia in human trials to treat cancer. We identified the first non-hypercalcemic anti-cancer vitamin D analog MT19c by altering the A-ring of ergocalciferol. This study describes the therapeutic efficacy and mechanism of action of MT19c in both in vitro and in vivo models. METHODOLOGY/PRINCIPAL FINDING:Antitumor efficacy of MT19c was evaluated in ovarian cancer cell (SKOV-3) xenografts in nude mice and a syngenic rat ovarian cancer model. Serum calcium levels of MT19c or calcitriol treated animals were measured. In-silico molecular docking simulation and a cell based VDR reporter assay revealed MT19c-VDR interaction. Genomewide mRNA analysis of MT19c treated tumors identified drug targets which were verified by immunoblotting and microscopy. Quantification of cellular malonyl CoA was carried out by HPLC-MS. A binding study with PPAR-Y receptor was performed. MT19c reduced ovarian cancer growth in xenograft and syngeneic animal models without causing hypercalcemia or acute toxicity. MT19c is a weak vitamin-D receptor (VDR) antagonist that disrupted the interaction between VDR and coactivator SRC2-3. Genome-wide mRNA analysis and western blot and microscopy of MT19c treated xenograft tumors showed inhibition of fatty acid synthase (FASN) activity. MT19c reduced cellular levels of malonyl CoA in SKOV-3 cells and inhibited EGFR/phosphoinositol-3kinase (PI-3K) activity independently of PPAR-gamma protein. SIGNIFICANCE:Antitumor effects of non-hypercalcemic agent MT19c provide a new approach to the design of vitamin-D based anticancer molecules and a rationale for developing MT19c as a therapeutic agent for malignant ovarian tumors by targeting oncogenic de novo lipogenesis

    Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanical properties of wood are largely determined by the orientation of cellulose microfibrils in secondary cell walls. Several genes and their allelic variants have previously been found to affect microfibril angle (MFA) and wood stiffness; however, the molecular mechanisms controlling microfibril orientation and mechanical strength are largely uncharacterised. In the present study, cDNA microarrays were used to compare gene expression in developing xylem with contrasting stiffness and MFA in juvenile <it>Pinus radiata </it>trees in order to gain further insights into the molecular mechanisms underlying microfibril orientation and cell wall mechanics.</p> <p>Results</p> <p>Juvenile radiata pine trees with higher stiffness (HS) had lower MFA in the earlywood and latewood of each ring compared to low stiffness (LS) trees. Approximately 3.4 to 14.5% out of 3, 320 xylem unigenes on cDNA microarrays were differentially regulated in juvenile wood with contrasting stiffness and MFA. Greater variation in MFA and stiffness was observed in earlywood compared to latewood, suggesting earlywood contributes most to differences in stiffness; however, 3-4 times more genes were differentially regulated in latewood than in earlywood. A total of 108 xylem unigenes were differentially regulated in juvenile wood with HS and LS in at least two seasons, including 43 unigenes with unknown functions. Many genes involved in cytoskeleton development and secondary wall formation (cellulose and lignin biosynthesis) were preferentially transcribed in wood with HS and low MFA. In contrast, several genes involved in cell division and primary wall synthesis were more abundantly transcribed in LS wood with high MFA.</p> <p>Conclusions</p> <p>Microarray expression profiles in <it>Pinus radiata </it>juvenile wood with contrasting stiffness has shed more light on the transcriptional control of microfibril orientation and the mechanical properties of wood. The identified candidate genes provide an invaluable resource for further gene function and association genetics studies aimed at deepening our understanding of cell wall biomechanics with a view to improving the mechanical properties of wood.</p
    corecore