50 research outputs found

    The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy

    Get PDF
    The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding

    Enhanced In Vivo Activity of Cefditoren in Pre-Immunized Mice against Penicillin-Resistant S. pneumoniae (Serotypes 6B, 19F and 23F) in a Sepsis Model

    Get PDF
    Background Specific antibodies are likely to be present before S. pneumoniae infection. We explored cefditoren (CDN) total and free values of serum concentrations exceeding the MIC (t>MIC) related to efficacy in a mice sepsis model, and the effect of specific gammaglobulins on in-vitro phagocytosis and in-vivo efficacy. Methodology/Principal Findings We used three pneumococcal isolates (serotype, MIC of CDN): Strain 1 (6B, 1 µg/ml), Strain 2 (19F, 2 µg/ml) and Strain 3 (23F, 4 µg/ml). Hyperimmune serum (HS) was obtained from mice immunized with heat-inactivated strains. In-vitro, phagocytosis by HS diluted 1/10 in presence/absence of sub-inhibitory concentrations was measured by flow cytometry including fluorescent bacteria and a neutrophil cell line. In-vivo dose-ranging experiments with HS (dilutions 1/2–1/16) and CDN (6.25 mg/kg–100 mg/kg tid for 48 h) were performed to determine the minimal protective dilution/dose (highest survival) and the non-protective highest dilution/dose (highest mortality: HS-np dilution and CDN-np dose) over 7 days. Efficacy of CDN-np in animals pre-immunized with HS-np (combined strategy) was explored and blood bacterial clearance determined. The CDN measured protein binding was 86.9%. In-vitro, CDN significantly increased phagocytosis (vs. HS 1/10). In non pre-immunized animals, t>MIC values for CDN of ≈35% (total) and ≈19% (free) were associated with 100% survival. Significant differences in survival were found between HS-np alone (≤20%) or CDN-np alone (≤20%) vs. the combined strategy (90%, 60% and 60% for Stains 1, 2 and 3), with t>MIC (total/free) of 22.8%/14.3%, 26.8%/16.0%, and 22.4%/12.7% for Strains 1, 2 and 3, respectively. Prior to the second dose (8 h), median bacterial counts were significantly lower in animals surviving vs. dead at day 7. Conclusions/Significance In mice (CDN protein binding similar to humans) total t>MIC values of ≈35% (≈19% free) were efficacious, with a decrease in the required values in pre-immunized animals. This reinforces that immunoprotection to overcome resistance may provide lifesaving strategies.This study was supported by an unrestricted grant from Tedec-Meiji Farma S.A., Madrid, Spain. Tedec-Meiji Farma S.A. had a role in providing reagents, materials and analysis toolsPeer reviewe

    A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments

    Get PDF
    Many mammals are well adapted to surviving in extremely cold environments. These species have likely accumulated genetic changes that help them efficiently cope with low temperatures. It is not known whether the same genes related to cold adaptation in one species would be under selection in another species. The aims of this study therefore were: to create a compendium of mammalian genes related to adaptations to a low temperature environment; to identify genes related to cold tolerance that have been subjected to independent positive selection in several species; to determine promising candidate genes/pathways/organs for further empirical research on cold adaptation in mammals

    Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance

    Get PDF
    Subtype-targeted therapies can have a dramatic impact on improving the quality and quantity of life for women suffering from breast cancer. Despite an initial therapeutic response, cancer recurrence and acquired drug-resistance are commonplace. Non-invasi
    corecore