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Abstract Recovery of volatile flavor-active aroma com-
pounds which are key components of processed liquid food
streams is of utmost concern to food industry, as these
compounds contribute to the quality of the final product.
This review paper highlights the recently published re-
search on different techniques that can be applied for re-
covery of the key flavor components which all aim for
minimizing the loss of volatile aromas and (re-) using them
in process streams, in order to enhance the flavor profile of
the liquid food product. Among the available techniques
for flavor recovery in food industry, distillation or strip-
ping, pervaporation, supercritical fluid extraction, and ad-
sorption showed potential for selective recovery of the fla-
vor components from liquid food streams. These tech-
niques can be combined in different stages of the process
or applied as an alternative to the other techniques for
aroma recovery. Less attention has been paid to supercrit-
ical fluid extraction among the available techniques, espe-
cially for recovery of aroma components from alcoholic
beverages. Since this technology demonstrated high selec-
tivity for flavor recovery in fruit juices and can take profit
from applying natural solvents like CO2, further research
on the application of this technology combined with
counter-current flow in a multi-stage contactor is recom-
mended to optimize the recovery process. Adsorption also
shows potential for flavor recovery that can be combined
with thermal processing or applied as an alternative stand-
alone technique.

Keywords Volatile flavor components . Selective recovery .

Liquid food streams . Alternative techniques

Introduction

Flavor perception is the sensory impression of food or any
other chemical substance, determined by chemical senses of
taste and smell [81]. Flavors are a mixture of volatile aroma
compounds which are classified to natural, natural identical,
and artificial flavorings, [13, 37, 53, 96]. Different chemical
substances contribute to particular flavor perceptions [37, 55]
as is depicted in Fig. 1. Flavor-active compounds, which are
normally present in beverages and liquid foods, are various
organic compounds, typically present at low concentrations
(ppm levels). Different classes of these organic compounds,
which can be regarded as aromas, for instance, are aldehydes
[36, 55, 95], esters [23, 57, 106], carboxylic acids [27, 98],
phenols [26, 49, 91, 110], hydrocarbons [76], ketones [34],
and terpenes [31, 54]. These flavor-active components are
widely used in beverage industry with the largest market in
North America, followed by Asia-pacific and Europe [59].
These markets are highly mature and emerging in Latin
America and Eastern countries. Approximately a growth rate
of 5% is projected to food flavor market since 2015 and con-
tinuous growth is expected till 2020 [60].

The value of food flavor market is projected to reach USD
15.1 billion by 2020 [6, 60]. Several alcoholic drinks such as
wine, beer, cider, and spirits are available in the market, in
which global top players account for share above 60%.
Flavored alcoholic beverages (FABs) share an important mar-
ket segment based on different age groups and beer, cider, and
FABs dominated the global market in 2014 [10]. Considering
the growing demand for flavor-active components’ consump-
tion in food and beverage industry, it is of extreme importance
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to quantify and control the level of these compounds accurate-
ly. The main flavor-active compounds present in liquid foods
and beverages together with their physical properties (hydro-
phobicity and solubility) are presented in Fig. 2. The function-
al groups (groups responsible for chemical reactions) for each
molecule are illustrated in red color. The higher value of par-
tition coefficient indicates more hydrophobicity of the flavor
compound and less solubility in water can be achieved [75].

During processing, the flavor composition of the beverage
might alter to a great extent, due to chemical and physical
changes of the aroma complex [52]. Chemical changes might
occur due to oxidations or Maillard reactions [67], during heat

treatment that can result in losses of the flavor compounds or
formation of new flavor compounds from original flavors.
Physical changes in the flavor composition can also occur
during concentration and removal of the excess water, while
some amounts of the volatile flavor compounds like esters
might be lost due to evaporation. These changes in flavor
composition are considered as undesired, and in order to pre-
vent or reduce the unwanted changes in composition of
flavors, different techniques can be implemented, which take
advantage of the physical properties of flavor-active compo-
nents like solubility, relative volatility, and hydrophobicity for
their separation (as explained in Fig. 3). To reduce the

Natural flavorings

From plant or animal raw material

Isolated by physical methods.

Obtained from microbial or 

enzymatic processes.

Natural-iden�cal flavoringsAr�ficial flavorings

Not intended yet in a natural 

product 

Typically produced by fractional 

distillation and additional chemical 

manipulation.

Obtained by synthesis or isolated 

through chemical processes.

E.g. Vanillin from lignin

Citral obtained by chemical synthesis 

Fig. 1 Classifications of flavors in food and beverages and contribution of chemical compounds to various flavors [13, 40]
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unwanted changes and losses of flavors during processing,
volatile aroma compounds, found in different side-streams
of the process, can be selectively recovered or removed from
the raw material prior to processing, or improvements in the
design can be implemented to achieve the desired recovery. In
the latter approach, achieving the desired process option is not
always possible and many factors should be taken into ac-
count in order to design the appropriate process which is also
feasible in terms of costs in comparison to traditional process.
Alternative techniques can be applied and have been proposed
by researchers to enhance the aroma recovery, which all aim
for minimizing the aroma loss, by producing an aroma con-
centrate which can be put back to the final product and con-
sequently improves its sensory quality. This paper serves as a
summary, with the aim of giving an overview of the research
and developments in techniques that are being applied for
aroma recovery in liquid food process industry in recent years.

Techniques for Flavor Recovery

Recovery of the volatile aroma components is practiced in
processing of fruit juices, alcoholic beverages, and other

liquid food streams and is usually connected with evaporation
[79, 101, 108]. It is mainly performed by stripping or distilla-
tion processes (based on differences in components’ relative
volatility) and also other alternatives like pervaporation (using
vapor and liquid phase and a membrane), supercritical fluid
extraction (using liquid/ solid and a supercritical fluid), and
adsorption (using solid as auxiliary phase and liquid). Fig. 3
represents the available technologies for aroma recovery in
liquid food processing. An overview of current research ad-
vances in each technology is provided in the next sections.

Aroma Recovery Through Distillation

The principle of the classical distillation system is stripping
the aqueous food stream containing the most volatile com-
pounds and concentrate them by fractional distillation to a
solution about 100–200 times the original concentration
[86]. It usually combines stripping with rectifying and enrich-
ment of the volatile aroma compounds [61] (represented in
Fig. 3 (part a)), in which the former depends on the relative
volatility of the aroma components. An impressive number of
research works contribute to our understanding of the appli-
cation of this technology for flavor recovery from liquid food

Alcohol

Isoamyl alcohol
Log P 1.09
Log S -0.69

Isobutanol
Log P    0.73
Log S -0.16

Esters

Ethyl acetate
Log P    0.28
Log S 0.03
Isoamyl acetate
Log P    1.53
Log S -1.41
Ethyl hexanoate
Log P    2.31
Log S -1.99
Ethyl valerate
Log P    1.87
Log S -1.46
Ethyl octanoate 
Log P  3.20
Log S -3.05

Aldehydes

Acetaldehyde
Log P  -0.38
Log S 0.84
Methylpropanal
Log P    0.86
Log S -0.06
Furfural
Log P    0.75
Log S -0.67
Phenylacetaldehyde
Log P   1.45
Log S -0.84

Resveratrol
Log P   3.40
Log S -3.13
Quercetin
Log P  2.16
Log S -2.43
Epicatechin
Log P     1.8 0
Log S -1.72
Taxifolin
Log P 1.82
Log S -2.28

Phenols

Limonene
Log P    3.22
Log S -3.11
Linalool
Log P    2.65
Log S -2.10
Menthone
Log P    3.05
Log S -2.75
Menthol
Log P    2.66
Log S -2.84

Terpenes

2-isobutyl-
methoxypyrazine
Log P    1.54
Log S -1.17
2,3-dimethylpyrazine
Log P -0.20
Log S 0.68

Pyrazines

2,3-butanedione
Log P    1.10
Log S -0.53
2,3-pentanedione
Log P  0.40
Log S -0.12

Diketones

Fig. 2 Main flavor-active components in liquid foods and their physical
properties (Hydrophobicity and solubility) (ChemAxon) [20]. The
Partition coefficient (P) is the ratio of concentrations of an un-ionized
compound in the two phases of immiscible solvents (water and

n-octanol) at equilibrium. logP is the 10-base logarithmic measure of the
partition coefficient; log S or intrinsic solubility is the 10-base logarithmic
measure of the solubility (mol/L)
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and beverages [4, 5, 21, 33, 35, 38, 45, 63, 66, 68, 89, 93, 94,
99]. Few recent research works unequivocally demonstrated
the application of Membrane Distillation (MD) and Vacuum
Membrane Distillation (VMD) for flavor recovery during the
last 4 years [1, 21, 68, 77]. Performance of MD is investigated
during beer dealcoholization processing and the effect of feed
and vacuum pressure are investigated on flux and selectivity
of a thin-film composite polyamide membrane. The increase
of feed and vacuum pressure could improve the membrane
flux, but decreased the membrane selectivity [77] and no ma-
jor change in composition of the flavor components, maltose,
and glycerol was observed, only slight loss of maltose in
dealcoholized beer was related to the adsorption phenomena
on the membrane surface for which membrane flushing for
recovery of the flavor compound was proposed. In compari-
son toMD configurations, VMD is believed to be an attractive
and cost-competitive technology, besides being characterized
by a lower operating temperature and hydrostatic pressure. It
permits higher partial pressure gradients; therefore, higher per-
meate flux can be achieved [1, 35, 99].

The application of this technology is investigated recently
for fractionation and separation of hydrocarbon terpenes of
green mandarin from alcohols, ketones, and aldehydes [93].

The influence of column pressure on boiling point of es-
sential oil and the composition of compounds in distillate is
studied. According to this study, efficient separation of ter-
penes could not be achieved unless higher number of stages
are used and no major degradation of distillate and bottom
streams was observed, with no effect on the quality of the final
product [93]. In the other studies, different operating strategies
like variable reflux rate are explored to increase the level of
terpenic compounds in specific wine distillate fractions to em-
phasize on floral aroma [63]. A drastic reduction of internal
reflux could enhance the recovery of terpenic compounds,
while producing a distillate which is rich in floral aromas,
and reduction in cooling flow could increase the presence of
higher alcohols and esters. The application of MD is com-
pared with VMD, for comparison of volatile composition of
wine fractions by two different dealcoholization techniques,
i.e., using a membrane contactor (MC) and distillation under
vacuum (D). The main difference observed between the two
techniques was the concentration grade reached by the
dealcoholized fractions which was 5 to 6 times higher when
applying VMD, due to associated loss of water [66]. The
result obtained was in agreement with previous observations
reported in other researchworks [38]. Recent study, conducted
by [89], is concerned with foaming, the main problem associ-
ated with stripping which might occur due to formation of gas

bubbles in the liquid and their stabilization through adsorption
of surface active agents at their interface. They have studied
the application of this technology for fruit juice processing,
with the main focus on studying the feasibility of air stripping
implementation, using a bubble column for recovery of the
flavor components. The summary of the recent research works
on application of distillation/stripping technique for flavor re-
covery in processing liquid foods is assembled in Table 1.

Aroma Recovery Through Centrifugal Distillation

Distillation can be performed in a spinning cone column
(SCC), a technology developed by Conetech [24], for recov-
ery of aromas and removing undesirable volatile components
from fruit juices and other food liquid streams (see Fig. 3 (part
a)). This technology has the advantage that it operates at low
temperatures, short residence times, with effective vapor/
liquid mixing. Counter-current contacting the vapor and the
liquid in alternating and rotating truncated cones which act as
contacting stages increases the mass transfer rates and has the
advantage over conventional plate columns, operating at at-
mospheric pressure, since separation efficiency about 20NTU/
m, can be achieved in SCC in comparison to 6NTU/m in
packed columns [86]. It has been successfully applied for
recovery of volatile aroma compounds in wine and beer in-
dustry, for removing delicate aromas, removal of sulfur diox-
ide from grape juice, production of grape concentrates and
alcohol reduction in wines [19, 58, 88]. A number of compar-
ative studies are available on the application of this technology
for aroma recovery for liquid foods. Table 1 highlights the
most recent research conducted on the application of this
technology.

Pervaporation Membrane Separation Technique

Pervaporation is an attractive technology for processing ther-
mal sensitive aroma compounds. This membrane process is
based on a selective transport of a liquid mixture through a
selective ceramic or polymeric membrane [2] (as illustrated in
Fig. 3, part a). This technique can be an alternative to conven-
tional separation processes such as steam distillation, liquid
solvent extraction, and vacuum distillation and has been suc-
cessfully applied during the last years, for recovery of aroma
compounds from fruits and fruit juices [11, 39, 47, 70, 73, 78]
and subsequent addition to the same juice after concentration
by evaporation [41, 51, 92]. Pervaporation technique has also
been applied for ethanol removal over the last few years [18,
97, 102] and aroma recovery from alcoholic beverages [14,
17, 19, 50]. The most recent studies for the application of this
technique, conducted by different researchers in food industry,
are summarized in Table 1.

In the recent studies conducted by Catarino et al. [17] and
Catarino and Mendes [18] on aroma recovery from beer and

�Fig. 3 Alternative technologies for flavor recovery: a vapor/liquid
equilibrium (pervaporation, stripping, and centrifugal distillation), b
liquid/solid and supercritical fluid equilibrium (supercritical fluid
extraction), and c solid/liquid equilibrium (adsorption) [24, 71, 88]
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wine, the effect of operating conditions such as feed velocity
and temperature and permeate pressure are studied on process
performance, considering the responses of permeate flux and
aromas/ethanol selectivities, ethanol concentration and ratio
between higher alcohols and esters in the permeate. They pro-
posed the optimum operating conditions and the range of se-
lectivities for higher alcohols and esters: four alcohols (etha-
nol, propanol, isobutanol, and isoamyl alcohol), two esters
(ethyl acetate and isoamyl acetate) and an aldehyde (acetalde-
hyde). According to their studies on lab scale, selectivity of
higher alcohols was positively affected by the temperature and
to a minor extent by the feed velocity, while permeate pressure
affects negatively their selectivity due to their low saturated
vapor pressures (low volatilities) [17, 56]. This trend was not
observed on industrial plant scale. On the other hand, selec-
tivity of esters decreased with temperature and increased with
permeate pressure and velocity. As a result, the ratio of higher
alcohols/esters increased with the temperature and decreased
with feed velocity and permeate pressure. A new industrial
process was proposed in further studies for producing non-
alcoholic beer [17, 18]. The aroma compounds are obtained
by pervaporation of the original beer using the same compos-
ite membrane, which they had tested in order to investigate the
effect of operating conditions in their previous studies. High
permeation temperature and low feed flow rate were the most
effective for maximizing the permeation flux and the equilib-
rium of the flavor profile. For production of dealcoholized
wine, they could also successfully combine pervaporation
with nano-filtration (NF) for recovery of aroma compounds
before the dealcoholization step and adding the recovered
aromas back again to the dealcoholized product, which in-
creased the flavor sensation. The application of pervaporation
with NF is investigated by Catarino and Mendez [18] and
Salgado et al. [84] for recovery of aromas from low-alcohol
white wines. They have investigated the performance of the
combined units in pilot scale for recovery of aroma compo-
nents. A two-stage NF process was tested for sugar reduction
of must, followed by pervaporation to recover aroma precur-
sors from grape must (i.e., higher alcohols and esters) and
restitution of the flavor precursors. They could achieve the
best results for obtaining an optimal aroma profile close to
original must, by combining pervaporation with a two stage
NF. To achieve more desirable results, they proposed the en-
hancement of mass transfer during pervaporation through in-
creasing the pervaporation time, a higher feed tangential flow
or feed pressure which improves the aroma transfer, taking
into account the limit for maximum pressure drop. In the other
studies conducted by Del Olmo et al. [29], the final quality of
the alcohol-free beer was improved through pervaporation to
recover the aromas and flavor constituents of beer, such as
isobutyl alcohol, ethyl acetate, and isoamyl acetate. The ap-
plication of pervaporation concentrating volatile aroma com-
pounds in industrial soluble coffee is studied in the research

work conducted by Weschenfelder et al. [107]. They have
investigated the effect of feed flow rate, temperature, and per-
meate pressure on the pervaporation performance of selected
compounds in the group of ketones (i.e., 2,3-butanedione and
2,3-pentanedione), aldehydes (i.e., benzaldehyde, and acetal-
dehyde and furfural and 5-methyl-furfural), and alcohols (i.e.,
3-methyl-butanal) and 2,5-dimethylpirazene. For all the tested
compounds, permeation flux increased with temperature and
results indicated that aroma compound fluxes decreased with
partial pressure except for 5-methyl-furfural, and 2,3-
butanedione and 2,5-dimethyl pirazene presented the highest
enrichment factors in the experimental conditions evaluated in
their work. They proposed an optimization step for industrial
purposes in order to concentrate the aroma profile for soluble
coffee. More information on the current state of research on
application of this technology for flavor recovery is given in
Table 1.

Aroma Recovery Through Supercritical Fluid Extraction

Supercritical fluid extraction (SFE) is a process which uses
substances at pressure and temperature above the critical point
(as illustrated in Fig. 3 (part b)) as solvents to extract valuable
materials [7, 28, 85]. Supercritical extraction with CO2 has
been widely adopted for isolation of volatile aroma com-
pounds in plants and fruits [7, 42, 100] and vegetable oils from
preprocessed seeds [30, 69]. There are some research works
concerned with aroma recovery from alcoholic beverages [90]
combined with a dealcoholization process [15, 64, 82].
Supercritical CO2 can be applied for batch extraction of solids,
for multi-stage counter-current separation and fractionation of
liquids, and for adsorptive and chromatographic separations
[15, 62]. This technique is mainly carried out at different
modes of operation, which is mainly concerned with extrac-
tion from solids, carried out in batch or single-stage mode.
Single-stage extraction consists of two process steps, extrac-
tion and separation of the extract from the solvent. This simple
mode of operation enables contacting the feed until a certain
mean residual concentration in the solid raffinate is achieved.
However, during the extraction process, many factors like
extraction kinetics might change due to depletion of the solid
substrate from solid that might change the optimum process
conditions. In addition, loading the solvents can be enhanced
by increasing the number of stages and operating in a counter-
current mode. This alteration reduces the amount of solvent
required and makes continuous production of extract achiev-
able [15]. Application of counter-current supercritical extrac-
tion was studied for apple aroma recovery by Bejarano and
Del Valle [7]; the effect of temperature, pressure, and solvent
to feed ratio on fractionation and concentration characteristics
of six apple aromas is investigated. They could achieve high
separation of individual aromas over water, extraction yield of
aromas higher than 86%. However, polarity difference
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between the tested compounds was the drawback of applica-
tion of this technique for separation of some tested alcohols
from aldehydes. The other recent research work is concerned
with extraction of catechins and caffeine from green tea, using
different co-solvents (i.e., ethyl lactate, ethyl acetate, and eth-
anol) and supercritical CO2 (SC-CO2) [105]. For the experi-
mental procedure, two different approaches of static (introduc-
ing the co-solvent in the extraction cell and pumping SC-CO2)
and dynamic (mixing co-solvent with SC-CO2 before intro-
duction into the extraction cell) were tested in pilot scale. The
highest caffeine extraction yield was obtained with ethyl ace-
tate using both approaches (13 and 14.2 mg g−1 of tea),
followed by ethanol (10.8 and 8.8 mg g−1). Lowest extraction
yield was achieved using ethyl acetate as co-solvent (lower
than 7 mg g−1). Application of ethanol as a co-solvent in
extraction of flavors using SC-CO2 is also investigated for
extraction of fatty acid esters, phenols, coumarin, and terpene
derivatives from citrus [100]. The most enriched and concen-
trated extracts of coumarin (osthole) was obtained (approxi-
mately 47%) at 170 bar. Furthermore, SCE is successfully
applied for flavor recovery and ethanol removal from alcohol-
ic beverages [25, 42, 82, 90]. In the studies conducted by
Ruiz-Rodriguez et al. [82], this technique is implemented for
aroma recovery and ethanol removal from aqueous solutions.
They have developed a two-step process for production of
low-alcohol beverage from wine by recovering the aromas
in a counter-current packed column using low CO2/wine ra-
tios. The developed two-step process proved to have similar
antioxidant activities and aroma profile to the original wine.
Recovery of volatile alcohols and esters is investigated on
pilot scale using counter-current supercritical fluid extraction
(CC-SFE) from grape spirits [25]. The effect of different
solvent-to-feed ratios is examined on recovery of volatiles.
As they concluded in their survey, in order to achieve the
highest ethanol and volatiles’ extraction yield, lowest
solvent-to-feed ratio should be used.

SC-CO2 extraction was employed for extraction of aroma
compounds from sugar cane in the work of Gracia et al. [42],
for rum production. According to their studies, the extraction
yield increased with increasing the temperature and pressure.
Optimization of counter-current supercritical fluidic extrac-
tion (CC-SFE) conditions is explored by Señoráns et al. [90]
for obtaining high-quality brandy aromas. As is demonstrated
in their work, increasing the flow rate increased the presence
of aroma compounds in the separator. When increasing the
extraction pressure, a higher sample flow rate has to be used
to achieve the maximum extraction.

Supercritical CO2 technology is adopted widely and its
economic feasibility and advantages over conventional tech-
niques should be proven for each applied technology. Despite
initial high capital costs, operating costs would be lower, as it
is operated as a continuous process [62, 74, 82], and overall
feasibility can be proven at certain scales of operation. This

technology enables the possibility of combining an extraction
operation with column fractionation under supercritical con-
ditions to concentrate the bioactive flavor components [62]. In
comparison to other techniques for aroma recovery, less atten-
tion has been paid to application of this technology for recov-
ery of aroma compounds from liquid food streams. Further
studies on application of this technique for aroma recovery
is recommended, especially for production of alcoholic bev-
erages, which is of high economic interest [10].

Regeneration and Recovery of Aromas via Adsorption

Among the available techniques for aroma recovery, adsorp-
tion is a technique which shows potential for selective recov-
ery of the flavor compounds and can be applied as an alterna-
tive to thermal processes or can be combined with distillation/
stripping in an integrated process [22, 46, 72]. It can be ap-
plied as a technique for selective recovery of the compounds
based on their affinity toward a ligand (affinity chromatogra-
phy), based on charge (ion-exchange chromatography), hy-
drophobicity (hydrophobic interaction chromatography
(HIC)), and based on polarity, or size of the molecules (size
exclusion chromatography (SEC)) [43, 44, 87]. The mecha-
nism of different modes of separation in adsorption technique
is depicted in Fig. 3 (part c). During the last 2 years, this
technique has been successfully applied to recover mainly
phenolic compounds besides other volatile aroma components
from liquid streams in food processing industry using adsor-
bents such as activated carbon, chitosan, minerals (zeolites),
and synthetic resins [16, 32, 48, 65, 83, 103, 104, 108]. In the
recent studies, application of this technique is investigated for
recovery of coffee aroma compound benzaldehyde on granu-
lar activated carbon derived from coconut husk [32]. The ef-
fect of fixed-bed operating parameters like inlet concentration
and inner diameter of the bed are investigated on adsorption
and recovery of the aroma component. They could use the
obtained results from column performance to perform a
scale-up study with error of less than 12%. The current re-
search focus is on development of this technique to synthesize
new adsorbent materials which have more affinity to adsorb
aroma components [48]. The application of synthesized chi-
tosan, functionalized with Fe3O4 magnetic microspheres coat-
ed with polyaniline, is studied for adsorption of phenolic com-
ponents in juice samples. According to the obtained results,
synthetic microspheres showed high permeability and accept-
able recovery of the phenolic components (between 85 and
107%) [48]. Considering the high potential of this technique
for aroma recovery, in combination with other separation tech-
niques or as an alternative, further research is worthwhile to
investigate new synthesized and functionalized adsorbent ma-
terials which are also applicable in food industry for recovery
of volatile aroma components.
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Concluding Remarks

Various techniques are proposed and tested according to stud-
ies reported in literature for recovery of aroma components,
which all aim for minimizing the loss of aroma compounds
and recovering the key components which are valuable in
producing a high-quality final product. The technologies that
can be applied for aroma recovery in food industry according
to former investigations are stripping or distillation, which can
be performed as membrane vacuum distillation or centrifugal
distillation, pervaporation, supercritical extraction, and ad-
sorption. Among these available techniques, stripping and
distillation are widely applied for aroma recovery in process-
ing alcoholic beverages and juices. Pervaporation as an alter-
native technique could show promising achievements for re-
covery of the aroma compounds from aqueous food streams.
The current research focus on the application of this technique
on aroma recovery is on the optimization of conditions to
enhance the selectivity over specific aroma components in
the process. In comparison to the other alternatives, less atten-
tion has been paid to supercritical extraction of aromas, spe-
cifically for aroma recovery from alcoholic beverages. The
great selectivity of supercritical extraction has been proved
by several investigators, which are demonstrative, since they
fully take profit of applying supercritical fluid carbon dioxide
as a non-toxic, and natural GRAS (Generally Recognized as
safe) solvent with high selectivity at relatively low tempera-
ture, which prevents alteration of thermolabile products.
Applying this technology, selectivity, and capacity can be
tuned by changing operating pressure and temperature.
Meanwhile, combining this technique with counter-current
flow and reflux in a multistage contactor can lead to an opti-
mized process conditions. Further research is recommended to
study the application of this technique for recovery of aroma
compounds, especially in alcoholic beverage industry which
is of high economical interest, and where alcoholic beverage
fractionation is a challenge, since ethanol is present at signif-
icant concentration in comparison to aroma components
which are often present at trace levels and modifies the carbon
dioxide solvent power in reducing its selectivity over water
and other aroma products. Among the reviewed techniques,
adsorption can be applied as a promising technique for selec-
tive recovery of aroma components and adding back the re-
covered key components to process streams, in order to pro-
duce a high-quality final product. Additional research is re-
quired to study the possibilities of applying this technique for
flavor recovery as an alternative or combined with thermal
processing.
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