309 research outputs found

    Measuring Learners’ Attitudes Toward Team Projects: Scale Development Through Exploratory And Confirmatory Factor Analyses

    Get PDF
    Team projects are increasingly used in engineering courses. Students may develop attitudes toward team projects from prior experience, and their attitudinal responses could influence their performance during team project-based learning in the future. Thus, instructors need to measure students’ attitudes toward team projects during their learner analysis to better understand students’ characteristics and be proactive in providing effective strategies to help students succeed in a team project environment. The purpose of our study was to develop a survey instrument that measures students’ attitudes toward team projects to be used as a learner analysis tool, derived from our local practical needs and due to the lack of appropriate existing instruments. The study was conducted at a mid-sized university in the northwestern United States during 2015-2016. After we generated an initial pool of 50 items, we administered the survey to 225 undergraduate engineering students, performed exploratory factor analysis on the data, and arrived at a four-factor solution of 20 items and a three-factor solution of 14 items. We tested the two competing solutions with another set of 330 undergraduate engineering students. Based on our confirmatory factor analysis results, we arrived at a three-factor model of 12 items as the finalized scale, which measures: (a) professional capacity building, (b) learning and problem-solving skills development, and (c) workload challenges. We call the scale, the Attitudes toward Team Projects Scale on Capacity, Learning, and Workload (ATPS-CLW). Suggestions for future research include continuous development, testing, and validation of the scale

    Evolution of a First-Year Engineering Course

    Get PDF
    The first-year engineering course at Boise State University has evolved significantly over the past decade as a result of continuous improvement with a particular focus on student retention. The course was originally created in 1999-2001 as an “Introduction to Engineering” course in order to recruit students to one of the fields of engineering, by introducing those fields of engineering as topics across the semester. Over the first ten years, the course continued that introductory-to-field focus while also introducing a significant design element solving openended engineering problems. As a result of a five-year grant aimed toward improving first-year retention, the first-year course was substantially revised in 2013 to focus on developing mathematics skills, based on the work of Klingbeil and colleagues1–3. This paper describes these most recent modifications to the course and presents results from students who took the modified course as they moved forward in their academic careers and took second year mathematics and science courses. We collected data both in the form of grades and measurements of students’ self-efficacy to explore how increasing mathematical content in the first-year engineering class can improve students’ performance in both co-enrolled and subsequently enrolled mathematics and science courses

    The interstellar oxygen-K absorption edge as observed by XMM-Newton

    Full text link
    High resolution X-ray spectra of the Reflection Grating Spectrometer (RGS) on board the XMM satellite are used to resolve the oxygen K absorption edge. By combining spectra of low and high extinction sources, the observed absorption edge can be split in the true interstellar (ISM) extinction and the instrumental absorption. The detailed ISM edge structure closely follows the edge structure of neutral oxygen as derived by theoretical R-matrix calculations. However, the position of the theoretical edge requires a wavelength shift. In addition the detailed instrumental RGS absorption edge structure is presented. All results are verified by comparing to a subset of Chandra LETG-HRC observations.Comment: LaTeX2e A&A style, 10 pages, 12 postscript figures, accepted for publication in Astronomy and Astrophysic

    Inactivation of mammalian Ero 1α is catalysed by specific protein disulfide isomerases

    Get PDF
    Disulfide formation within the endoplasmic reticulum is a complex process requiring a disulfide exchange protein such as protein disulfide isomerase and a mechanism to form disulfides de novo. In mammalian cells, the major pathway for de novo disulfide formation involves the enzyme Ero1α which couples oxidation of thiols to the reduction of molecular oxygen to form hydrogen peroxide. Ero1α activity is tightly regulated by a mechanism that requires the formation of regulatory disulfides. These regulatory disulfides are reduced to activate and reform to inactive the enzyme. To investigate the mechanism of inactivation we analysed regulatory disulfide formation in the presence of various oxidants under controlled oxygen concentration. Neither molecular oxygen, nor hydrogen peroxide was able to oxidise Ero1α efficiently to form the correct regulatory disulfides. However, specific members of the PDI family such as PDI or ERp46 were able to catalyse this process. Further studies showed that both active sites of PDI contribute to the formation of regulatory disulfides in Ero1α and that the PDI substrate binding domain is crucial to allow electron transfer between the two enzymes. These results demonstrate a simple feedback mechanism of regulation of mammalian Ero1α involving its primary substrate

    ISICSoo: a class for the calculation of ionization cross sections from ECPSSR and PWBA theory

    Full text link
    ISICS, originally a C language program for calculating K-, L- and M-shell ionization and X-ray production cross sections from ECPSSR and PWBA theory, has been reengineered into a C++ language class, named ISICSoo. The new software design enables the use of ISICS functionality in other software systems. The code, originally developed for Microsoft Windows operating systems, has been ported to Linux and Mac OS platforms to facilitate its use in a wider scientific environment. The reengineered software also includes some fixes to the original implementation, which ensure more robust computational results and a review of some physics parameters used in the computation. The paper describes the software design and the modifications to the implementation with respect to the previous version; it also documents the test process and provides some indications about the software performance.Comment: Preprint submitted to Computer Physics Communication

    Discovery of X-rays from Venus with Chandra

    Get PDF
    On January 10 and 13, 2001, Venus was observed for the first time with an X-ray astronomy satellite. The observation, performed with the ACIS-I and LETG/ACIS-S instruments on Chandra, yielded data of high spatial, spectral, and temporal resolution. Venus is clearly detected as a half-lit crescent, with considerable brightening on the sunward limb. The morphology agrees well with that expected from fluorescent scattering of solar X-rays in the planetary atmosphere. The radiation is observed at discrete energies, mainly at the O-K_alpha energy of 0.53 keV. Fluorescent radiation is also detected from C-K_alpha at 0.28 keV and, marginally, from N-K_alpha at 0.40 keV. An additional emission line is indicated at 0.29 keV, which might be the signature of the C 1s --> pi* transition in CO_2 and CO. Evidence for temporal variability of the X-ray flux was found at the 2.6 sigma level, with fluctuations by factors of a few times indicated on time scales of minutes. All these findings are fully consistent with fluorescent scattering of solar X-rays. No other source of X-ray emission was detected, in particular none from charge exchange interactions between highly charged heavy solar wind ions and atmospheric neutrals, the dominant process for the X-ray emission of comets. This is in agreement with the sensitivity of the observation.Comment: 12 pages, 9 figure
    corecore