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ABSTRACT 
 

Team projects are increasingly used in engineering courses. Students may develop attitudes toward team projects 
from prior experience, and their attitudinal responses could influence their performance during team project-based 
learning in the future. Thus, instructors need to measure students’ attitudes toward team projects during their learner 
analysis to better understand students’ characteristics and be proactive in providing effective strategies to help 
students succeed in a team project environment. The purpose of our study was to develop a survey instrument that 
measures students’ attitudes toward team projects to be used as a learner analysis tool, derived from our local 
practical needs and due to the lack of appropriate existing instruments. The study was conducted at a mid-sized 
university in the northwestern United States during 2015-2016. After we generated an initial pool of 50 items, we 
administered the survey to 225 undergraduate engineering students, performed exploratory factor analysis on the 
data, and arrived at a four-factor solution of 20 items and a three-factor solution of 14 items. We tested the two 
competing solutions with another set of 330 undergraduate engineering students. Based on our confirmatory factor 
analysis results, we arrived at a three-factor model of 12 items as the finalized scale, which measures: (a) professional 
capacity building, (b) learning and problem-solving skills development, and (c) workload challenges. We call the 
scale, the Attitudes toward Team Projects Scale on Capacity, Learning, and Workload (ATPS-CLW). Suggestions for 
future research include continuous development, testing, and validation of the scale.     
 
Keywords: Attitudes Toward Team Projects; Team Project-Based Learning; Exploratory Factor Analysis; 
Confirmatory Factor Analysis 
 
 

INTRODUCTION 
 

or the last four decades, educators have adopted small group, team-based learning strategies to 
facilitate learner-oriented, cooperative learning (Davidson & Major, 2014; Davidson, Major, & 
Michaelsen, 2014; Johnson & Johnson, 1999). In a team-based learning environment, a class of 

students are divided into several teams, and the members of each team work together to complete their team goal —
e.g., a team project. Team-based learning is frequently used in engineering education (Borrego, Karlin, McNair, & 
Beddoes, 2013), not only during upper-division and capstone courses (e.g., Griffin, Griffin, & Llewellyn, 2004; Todd, 
Magleby, Sorensen, Swan, & Anthony, 1995), but also increasingly in lower-division engineering classes (e.g., 
Burkett, Kotru, Lusth, McCallum, & Dunlap, 2014; O’Connell, 2011). The ABET (Accrediting Board for Engineering 
and Technology) (2016) criteria also include “(d) an ability to function on multidisciplinary teams” which clearly 
addresses the importance of educating engineering students to become effective team members. However, students 
may develop positive or negative attitudes toward team projects from their prior experiences, and then their attitudinal 
responses could influence their performance during team-based learning in the future (Alford, Fowler, & Sheffield, 
2014; Favor & Harvey, 2016). By conducting a learner analysis during early stages of the systematic instructional 
design process (Dick, Carey, & Carey, 2014), instructors can become aware of students’ attitudes toward team projects 
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and be better prepared to select and implement effective instructional strategies to help students successfully work in 
a team environment.  
 
In this article, we will discuss the characteristics of team-based learning, the importance of understanding student 
attitudes toward team projects, and the need for developing a survey instrument that measures students’ attitudes 
toward team projects. Then, we will explain the process that we used to develop a survey instrument intended to 
measure student attitudes toward team projects, describe the results, and discuss the application of the survey 
instrument as a learner analysis tool.  
 

THEORETICAL FRAMEWORK 
 
Cooperative, Team-Based, Problem-Based Approach during Project-Based Learning 
 
First, when we use the word team in this article, we refer to the context where individual members of a group have 
distinct responsibilities, aiming at producing a shared outcome such as a tangible product or a team project report 
(Fink, 2002). With that in mind, team-based learning assumes cooperative learning. Based on social interdependence 
theory, cooperative learning emphasizes that learners work or act together as one to achieve their common goal 
(Johnson, Johnson, & Smith, 2014; McInnerney & Roberts, 2004). Successful cooperative learning relies on learners’ 
perception of positive interdependence—learners perceiving that their work benefits others, and others’ work benefits 
them (Johnson & Johnson, 2004). Successful cooperative learning also depends on individual accountability (the 
performance of each member) as well as group [team] accountability (the overall performance of the group) (Johnson 
& Johnson, 2004; Johnson, Johnson, & Smith, 1991; Millis, 2014). Learners during cooperative learning exert 
considerably greater effort to achieve and experience greater social support than when they are in competitive or 
individual learning environments (Johnson & Johnson, 2004).  
 
Cooperative, team-based learning often involves problem-based learning with authentic tasks. Started as an innovative 
educational approach used at a medical school, problem-based learning has earned popularity in various disciplines 
including engineering education, with slightly different approaches such as problem-focused learning, activity-
focused learning, design-based learning, or case studies (Marra, Jonassen, Palmer, & Luft, 2014; Savin-Baden, 2014). 
The characteristics of problem-based learning include: learner-centered approaches, learning in small groups, teachers 
as facilitators or guides, focusing on real-world problems to solve, and self-directed learning (Barrows, 1996). 
Problem-based learning also enables learners to work on authentic tasks in a context reflecting the characteristics of 
the real-world professional practice. Authentic learning is considered to have the benefits of helping learners develop 
robust knowledge and better transfer their knowledge to real-world practice (Herrington, Reeves, & Oliver, 2014). 
Research has shown that engineering students who spent more time in cooperative education (co-op) programs (a form 
of experiential education that allows students to complement their classroom experiences with real work experience) 
rated their understanding of engineering problem-solving more highly than those who did not participate in such 
programs (Yin, 2009). 
 
A close cousin of problem-based learning is project-based learning where students accomplish learning objectives by 
completing a given project. A unique characteristic of project-based learning is that it “results in a realistic product, 
event, or presentation to an audience” (Barron & Darling-Hammond, 2010, p. 203). The audience of project-based 
learning could be the instructor, the classmates, and/or the project client and stakeholders. There has been an emerging 
trend that even first-year cornerstone engineering courses are designed with project-based learning (Dym, Agogino, 
Eris, Frey, & Leifer, 2005). The terms, problem-based learning and project-based learning, do not refer to totally 
different, mutually exclusive, types of learning. ‘Project-based learning’ addresses the structure and outcome (the 
project to be completed and delivered at the end of learning), whereas ‘problem-based learning’ focuses on the content 
(the problem to be solved whether it is completed within a semester-long project or during classroom activities). While 
students work as a team to complete a project (i.e., project-based learning), they often engage in problem-based 
learning. Team project-based learning is viewed as a type of “instructional methods that learning occurs while students 
interact with each other to complete the projects” (Oh, 2015, p. 232). When we refer to ‘team project-based learning’ 
in this article, we imply multiple students cooperatively working to solve problems with each other as a team, in order 
to complete a given project.  
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Benefits and Concerns with Team Project-Based Learning 
 
The amount of literature discussing team-based learning has increased since the late 1990s (Haidet, Kubitz, & 
McCormack, 2014). In engineering education in particular, team-based learning environments have shown to produce 
positive outcomes such as improved self-efficacy (Schaffer, Chen, Zhu, & Oakes, 2012), design and professional skills 
(Pimmel, 2001), and interdisciplinary identities (McNair, Newswander, & Boden, 2011). Senior-level engineering 
capstone courses are often designed with team-based learning methods using industry client-based projects, which 
have shown to help students prepare for their engineering careers (Griffin et al., 2004; Todd et al., 1995). Additionally, 
engineering educators and researchers have been advocating the incorporation of team-based projects even in first-
year classes to help students better acquire design skills and to improve student retention through the curriculum (Dym 
et al., 2005). However, some studies showed that engineering students who participated in cooperative learning did 
not outperform students in traditional lecture-based learning (Broyles, 1999) or individual learning (Moraga & Rahn, 
2007). Other research has pointed out that sufficient time should be given to cooperative learning teams to mature in 
order for them to produce academic performance superior to that of students in an individualistic learning condition. 
For example, Hsiung (2012) revealed that students in teams did not start outperforming students in individual learning 
until the 3rd and 4th units of an 18-week, four-unit course. 
 
Although team projects have potential to provide learners with the benefits of cooperative and authentic problem-
based learning, they are not free of problems. The quality of team-based learning may vary depending on the degree 
of authentic learning and cooperative learning, influenced by various factors. First, from the instructor’s standpoint, 
designing a course with team projects with highly authentic learning experiences is time-consuming, and it requires 
substantial commitment. Necessary resources including industry clients are not always available. From the students’ 
perspective, students may feel frustrated when they experience the “free rider” effect (social loafing) where some team 
members contribute little while benefitting from other members who do most of the work (Borrego et al., 2013; Griffin 
et al., 2004; Michaelsen & Knight, 2002). Collaboration without coordination is also a problem. During our teaching, 
we have also observed—what we call—the “Frankenstein effect” which illustrates that the final outcomes of team 
projects look as if pieces were brought in from different sources and put together without coordination. The free-rider 
and Frankenstein effects represent symptoms of ineffective teams.  
 
Another concern is that cooperative learning does not happen automatically or immediately just because multiple 
learners are assigned to a team (Johnson & Johnson, 1999). Teamwork is developed through several stages from 
forming (testing and dependence) to storming (intragroup conflict), to norming (development of group cohesion) and 
performing (functional role-relatedness) (Tuckman, 1965). Effective teams often go through the first three of these 
stages quickly to arrive at the performing stage where they become effective at both learning and meeting their project 
goals. Unfortunately, some teams may have difficulty passing through the early stages and never come to fully function 
as an effective team. Intragroup conflicts might cause some teams to get stuck in the storming stage or to negatively 
influence the quality of their norming and performing stages. Research has shown that teams of engineering students 
who provided less peer support were among dysfunctional ineffective teams and also produced lower levels of 
academic performance (Hsiung, 2010).  
 
Attitudes toward Team Projects 
 
By-products of having participated in effective or ineffective teams are positive or negative attitudes toward team 
projects. A social psychologist, Gordon Allport, defined attitude in the first handbook of social psychology in 1935 
as “a mental and neural state of readiness, organized through experience, exerting a directive or dynamic influence 
upon the individual’s response to all objects and situations with which it is related” (Allport, 1935, p. 810). Since then, 
attitude as a construct has been widely studied in the field of Social Psychology. Attitude can be measured (Thurstone, 
1928) and is now better understood as “an individual propensity to evaluate a particular entity with some degree of 
favorability or unfavorability” (Eagly & Chaiken, 2007, p. 583). Attitude can be explained to contain three essential 
components – evaluation, attitude object, and tendency; attitude is developed through the individual’s past experience 
with the attitude object, and it is manifested in affective, cognitive, and/or behavioral responses (Eagly & Chaiken, 
1993, 2007; Ostrom, Bond, Krosnick, & Sedikides, 1994). Thus, in our research, we explain learners’ attitudes toward 
team projects as learners having tendency to evaluate the attitude object ‘team projects’ based on their past team 
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project experience, with some degree of positivity or negativity; they may express their attitudes affectively (feeling), 
cognitively (deciding), and/or behaviorally (acting on it).  
 
Attitudes vary not only in valence (i.e., positive or negative, or supportive or hostile) but also in terms of the degree 
of favorability (i.e., strong or weak). Once individuals develop strong attitudes, their attitudes become fairly persistent 
over time, resistant to persuasive strategies for change, and reliable in predicting behavior (Favor & Harvey, 2016; 
Krosnick & Petty, 1995; Olson & Fazio, 2009), although some strong attitudes can be changed, as shown in religious 
conversion and political indoctrination (Eagly & Chaiken, 1993). Attitudes are often context-sensitive, as they are 
formed based on one’s past experience in certain circumstances. For example, engineering students who participate 
in team projects during their undergraduate program would likely develop different types of attitudinal responses 
toward team projects based on their experiences. For example, in one study (Alford et al., 2014), first-year engineering 
students’ perceptions of ‘fun and learning’ team projects decreased midway through the class likely due to 
unexpectedly intense and less-than-ideal team experiences. And then, their attitudes toward teamwork somewhat 
improved by the end of the second project, which is partially attributed to the fact that the second project was more 
exciting and perhaps because students were instructed to improve team behaviors. During our teaching, we have also 
observed students expressing both positive and negative comments about their experience with team projects and 
showing their excitement or hesitation toward team project experience (e.g., “I worked in a great team in my last team 
project class! I hope to find another great team in this class.” or “I really dislike working in a team. I almost dropped 
the team project course last semester. Can I work alone in this class?”). In such cases, students’ attitudinal responses 
can influence their performance in team settings during future courses or even in their future professional careers. 
 

OVERALL RESEARCH PURPOSE 
 
Although students in team settings are exposed to a lot of potential benefits associated with cooperative and authentic 
problem-based learning as discussed earlier, instructors cannot assume that the students’ attitudes toward team projects 
or team project-based learning are always as positive as hoped. According to the systematic instructional design 
process (e.g., Dick, Carey, & Carey, 2014), the step after identifying course goals is to analyze learners and learning 
context. Following this systematic instructional design principle, one of our instructional goals was to help students 
develop teamwork through team projects, and we had strong needs to measure students’ attitudes toward team projects 
specifically to better understand the characteristics of our learners. Measuring students’ attitudes toward team projects 
would also allow a better prediction of the individual students’ behaviors and better preparation of instructional 
interventions during team projects. These practical needs led us to a search for existing instruments that measure adult 
learners’ attitudes toward team projects.  
 
From our literature review, we found only a handful of studies that tested instruments that measure perceptions of 
teamwork or cooperative learning experience. However, the existing instruments that we found did not satisfy our 
purpose for different reasons—for example, grades 5-9 students were the focus of the study (Johnson, Johnson, & 
Anderson, 1983); the instrument was about students’ field work experience rather than specifically about team projects 
(Parks, Onwueguzie, & Cash, 2001); the instrument was developed by exploratory factor analysis, but was not 
validated by confirmatory factor analysis (Peterson, & Miller, 2004; Senior & Swailes, 2007); the instrument items 
were grouped into two factors, positive attitudes and negative attitudes, based on the wording direction (Korkmaz, 
2012) rather than reflecting more meaningful constructs (Spector, Van Katwyk, Brannick, & Chen, 1997); some 
factors were measured with only one or two items (Tseng, Ku, Wang, &  Sun, 2009) when ‘three’ is the recommended 
minimum number of items for sufficient construct coverage (Brown, 2015; Hair, Black, Babin, & Anderson., 2010). 
The survey instrument that was closest to our needs was the Comprehensive Assessment of Team Member 
Effectiveness (CATME) survey (Loughry, Ohland, & Moore, 2007; Ohland et al., 2012). The CATME intends to 
measure five factors: 1. Contributing to the team’s work, 2. Interacting with teammates, 3. Keeping the team on track, 
4. Expecting quality, and 5. Having relevant knowledge, skills, and abilities. Examples of the CATME survey items 
are: “did a fair share of the team’s work,” “used teammates’ feedback to improve performance,” and “knew how to 
do the jobs of other team members” (see Loughry et al., 2007). It is an excellent post-measure tool for evaluating 
learners’ behaviors and abilities during or after a specific teamwork experience. However, it aims at measuring ‘team 
member effectiveness” in a particular project, which is different than our focus — i.e., to measure students’ current 
attitudes toward team projects. 
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Derived from our local practical needs and due to the lack of appropriate existing instruments, we decided to develop 
a learner analysis instrument that measures adults’ attitudes toward team projects through exploratory and 
confirmatory factor analyses. Our research goal was to develop an instrument that is useful in both school and 
workplace settings — we conducted this research in the context of higher education first, with plans to test the 
developed instrument at workplace settings in future research. We conducted our study in the College of Engineering 
at a mid-sized university in the northwestern region of the United States during 2015 and 2016. Our process included 
several phases – 1. Instrument development, 2. Exploratory factor analysis, 3. Confirmatory factor analysis, and 4. 
Instrument finalization. During the process, we followed the steps described in DeVellis’ (2012) guidelines in scale 
development:  
 

1. Determine clearly what it is you want to measure 
2. Generate an item pool 
3. Determine the format for measurement (the response scale) 
4. Have initial item pool reviewed by experts 
5. Consider inclusion of validation items 
6. Administer items to a development sample 
7. Evaluate the items 
8. Optimize scale length 

 
For statistical procedures, we referred to multiple comprehensive sources on exploratory and confirmatory factor 
analyses, including Brown (2015), Byrne (2010), Fabrigar and Wegener (2012), Hair et al. (2010), and Tabachnick 
and Fidell (2014), as well as other published studies that employed exploratory and confirmatory factor analyses to 
develop survey instruments to measure constructs, such as engineering students’ contextual competence (Ro, Merson, 
Lattuca, & Terenzini, 2015), engineering self-efficacy (Marmaril, Usher, Li, Economy, & Kennedy, 2016), 
interpersonal communication skills (Wilkins, Bernstein, & Bekki, 2015), and K-12 teachers’ self-efficacy for teaching 
engineering (Yoon, Evans, & Strobel, 2014).  
 

METHODS AND RESULTS 
 
Instrument Development 
 
Since we were clear that we wanted to measure students’ attitudes toward team projects (Step 1: Determine clearly 
what it is you want to measure), we moved on to Step 2: Generate an item pool. We used several sources to generate 
survey items. We conducted a literature review on theories and research regarding adult students’ attitudes toward 
team projects (e.g., Johnson & Johnson, 2004; Johnson, Johnson, & Smith, 1991; Johnson, Johnson, & Smith, 2006; 
Michaelsen, Knight, & Fink, 2002) and reflected on our decades-long experiences in teaching team-based courses. 
Then, we conducted an email-based open-ended survey with students, working practitioners, and university faculty 
members (n = 18) to obtain their perspectives. In the survey, we asked them to list five to ten statements that relate to 
their thoughts, feelings, and attitudes toward team projects, focusing on benefits or difficulties in completing team 
projects from a student’s perspective (if they are currently enrolled in a course), from a worker’s perspective (if they 
are not enrolled in a course, but active as practitioners in the workplace), or from an instructor’s perspective (if they 
are faculty members). Based on these sources, we developed an initial pool of 66 survey items. The initial pool of 
items should be considerably more than researchers plan to include in the final scale—in some cases, researchers may 
“begin with a pool of items that is three or four times as large as the final scale” and in other cases, “as small as 50% 
larger than the final scale” (DeVellis, 2012, p. 80). We did not pre-determine a specific number of items to be included 
in our final survey instrument, although we envisioned it (as a learner analysis tool) to be a relatively short, compared 
to lengthy (60-80 items) psychometric instruments. Thus, we considered 66 survey items to be an appropriate initial 
pool.  
 
To make the instrument usable in multidisciplinary team environments and applicable in either face-to-face or virtual 
workplace settings, we avoided wording such as “engineering students” or “engineering classrooms” in the item 
statements. We also followed guidelines for designing survey items (Kubiszyn & Borich, 1996) to write direct 
statements, ensured one thought per statement, and avoided double-negatives and double-barreled statements. Due to 
the structural format we chose to use (describing an attribute and its value in each item), some of the survey items 
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may appear somewhat lengthy. However, the use of this structure served our needs for gathering data during a learner 
analysis that would allow instructors to understand specific contexts of the team project environment associated with 
learners’ attitudes. We used a 7-point response scale (1-not true, 2-barely true, 3-slightly true, 4-moderately true, 5-
considerably true, 6-mostly true, 7-very true) (Step 3: Determine the format for measurement). We chose to use an 
odd-numbered response scale (7-point) in order not to force respondents to choose an option from the positive or 
negative side of the scale. Unlike other Likert-type scales that use ‘neutral’ or ‘uncertain’ as a mid-point, the mid-
point on our response scale was labeled ‘moderately true.’  
 
We emailed the survey items back to the 18 people who initially provided input and asked them to provide feedback 
on the following criteria: 1. if each item seems a valid measure of attitudes toward team projects, 2. if any items need 
to be revised to improve clarity or to be removed, and 3. if they want to suggest additional items. Seven of them 
responded with their comments. Three respondents were university faculty members who were knowledgeable in 
team-based learning—they served as experts to evaluate the clarity of the items as well as face validity (how relevant 
the items were to what we intended to measure) (Step 4: Have initial item pool reviewed by experts). We revised the 
initial pool of 66 survey items based on their feedback, and arrived at a 50-item survey.  
 
Among the 50 items, 14 of them described negative aspects of team projects (e.g., “I’d rather work alone because it is 
difficult to find teammates who have a work ethic similar to mine”). Four of the negatively-worded statements were 
paired with four of the positively-worded statements—for example: 
 

• “I learn a lot while completing a project with others” (positive) vs. “I do not learn much from my peers 
in a team project” (negative)  

 
We intended to use the pairs of items as validation items to detect unengaged respondents as described in the Data 
Screening section below (Step 5: Consider inclusion of validation items). We developed a web-based survey with the 
50 items using Qualtrics®. Step 6 (Administer items to a development sample), Step 7 (Evaluate the items) and Step 
8 (Optimize scale length) of scale development guidelines are described in the following Exploratory Factor Analysis 
and Confirmative Factor Analysis sections.  
 
Exploratory Factor Analysis  
 
Purpose 
 
Exploratory factor analysis (EFA) is appropriate when the goal of research is to create a measurement instrument that 
reflects a meaningful underlying latent dimension(s) or construct(s) represented in observed variables (Fabrigar & 
Wegener, 2012; Hair et al., 2010). In such context, researchers want to identify groups of variables, each of which has 
high correlations with only one factor, and to interpret and label each factor (Warner, 2008). We conducted EFA to 
develop a scale that measures adult students’ attitudes toward team projects. We intended to find out if the finalized 
scale was unidimensional or multidimensional, and if multidimensional, how many factors (dimensions) the 
instrument included and which items were grouped together as a factor.  
 
Sample and Data Collection 
 
Driven by our local needs for developing a learner analysis tool, we used a convenience sample of students enrolled 
in the College of Engineering (COEN) at our university; the population to which we intend to generalize our study 
results is limited to the students enrolled in the College of Engineering (COEN) at our university and other similar 
institutions. Our institution is a mid-sized university in the northwestern region of the United States. During Fall 2015, 
over 22,000 students enrolled in our university, and about 19,000 (86%) of them were undergraduate students (Boise 
State University, 2015). About 2,200 students enrolled in the undergraduate programs at the College of Engineering. 
For the EFA sample, we used the students who enrolled in 100-level ‘Introduction to Engineering’ courses offered in 
our university during Spring and Fall semesters in 2015. These courses required teams of students to complete team 
project assignments throughout the semester. The students were asked to voluntarily participate in the study by 
submitting the web-based survey. A total of 235 students completed the survey.  
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In the web-based survey questionnaire, the respondents read a definition of a team project and the direction as follows:  
 

A team project is defined as a type of work where two or more people share responsibility to complete a 
tangible outcome such as a report or a product while working together for two or more weeks. How do you 
think about, feel about, or approach team projects regarding benefits and problems associated with team 
projects? Please read each item below. Then, circle one of the numbers (from 1 to 7) that truly applies to 
you. 

 
The respondents completed the 50 items with the 7-point response scale (1-not true, 2-barely true, 3-slightly true, 4-
moderately true, 5-considerably true, 6-mostly true, 7-very true). We analyzed the data with SPSS v. 23.  
 
Data Screening 
 
We first checked for unengaged responses, using multiple methods. The Qualtrics system automatically records each 
respondent’s survey completion duration with a starting date/time and an ending date/time—we checked respondents 
who completed the survey in less than five minutes. We also checked respondents who marked all or most questions 
with the same option on the 7-point scale (by checking each case if its standard deviation is smaller than 0.5). We then 
compared the data obtained from four matching pairs of items describing positive and negative aspects of team projects 
to detect possible unengaged respondents. After screening data against these multiple criteria, we excluded ten 
unengaged respondents. Thus, we had a total of 225 data sets. The average age of the 225 respondents was 21.5 (std. 
dev. = 4.92). Table 2 compares the characteristics of the COEN population and the study participants in terms of 
gender, race/ethnicity, citizenship, and enrollment status (full-time and part-time). 
 
We checked for normality of data and removed three items with high levels of both skewness and kurtosis (> |1.0|). 
Then, we checked for missing values. Only 21 values were missing across 14 items in 17 cases. We performed a 
missing data analysis and found that the 21 values were missing completely at random (Little's MCAR test: c2 = 
692.03, df = 686, p = .428). We replaced the missing data values using the expectation maximization technique, which 
is “the simplest and most reasonable approach to imputation of missing data” that randomly occurred (Tabachnick & 
Fidell, 2014, p. 105).  
 
Factorability Check 
 
Then, we checked factorability of the 225 sets of data. The Keiser-Meyer-Olkin (KMO) Measure of Sampling 
Adequacy was .926, meeting the excellent-level threshold (above .90). More than 60% of correlation coefficient values 
among the items were greater than .30, and the Bartlett’s Test of Sphericity found that the correlations, collectively, 
were significant at the .001 level. All anti-image correlations (the KMO measures of individual variables) also fell in 
the acceptable range (above .50). These results indicated that the data set was appropriate for factor analysis 
(Tabachnick & Fidell, 2014). 
 
EFA Process and Results 
 
We conducted EFA by using maximum likelihood (ML) extraction and promax rotation. The first round of EFA 
revealed a ten-factor solution (i.e., a multidimensional structure) without a clear and interpretable pattern. We repeated 
the analysis by excluding items with low factor loadings or single-item factors, and extracting factors with an 
eigenvalue greater than one, until a clear pattern of interpretable factors without any low-loading and substantially 
cross-loading items emerged. In the process, we sought to identify factors with a minimum of three items per factor, 
preferably four or more, to satisfy the recommendation for conducting confirmatory factor analysis later on (Brown, 
2015; Hair et al., 2010). We finally arrived at a four-factor solution involving 20 items: KMO = .921, Bartlett’s Test 
of Sphericity, c2 (190, n = 225) = 2067.54, p < .001. We also performed EFA using direct oblimin rotation and it 
supported the four-factor solution. As shown in Table 1and Appendix A, a set of multiple items that loaded onto each 
of the four factors had a clear common theme. We labeled the four factors as learners’ attitudes toward team projects 
regarding:  
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1. Developing professional capacity for the workplace (Capacity)  
2. Improving learning and problem-solving skills (Learning) 
3. Avoiding workload-related challenges (Workload) 
4. Increasing persistence for better outcomes (Persistence) 

 
After we arrived at the four-factor solution, we double-checked if the multiple items of each factor are measuring the 
same factor (convergent validity), while the multiple factors are measuring distinct factors (discriminant validity). The 
size of factor loading can be used to indicate the degree of convergent validity of a model structure since “high loadings 
on a factor would indicate that they converge on a common point, the latent construct” (Hair et al., 2010, p. 686). The 
internal consistency level of multiple items within each factor is another indicator for convergent validity of a 
measurement model structure. Our four-factor solution showed that each item had a significant loading (defined as a 
loading above .40) on one factor, without cross-loadings. The levels of internal consistency among the items in Factors 
1, 2, 3, and 4 were satisfactory—Cronbach Alpha values were .84, .85, .80, and .79, respectively, and all of them were 
above the threshold of .70 (Hair et al., 2010, p. 125). Both results supported the convergent validity of the four-factor 
solution.  
 
Conversely, for the discriminant validity of a multidimensional measurement model, the factor correlation matrix can 
be used to check how much multiple factors are correlated (Table 1). The four factors measure different dimensions 
of the same construct—attitudes toward team projects. Thus, some degrees of correlations among multiple factors are 
expected. However, the correlations should not be too high to indicate redundancy among multiple factors. For 
example, an inter-factor correlation value of .32 would indicate about 10% of overlap in variance between two factors 
(Tabachnick & Fidell, 2014), while an inter-factor correlation value of 1.0 would indicate that the two factors are 
entirely redundant (Fabrigar & Wegener, 2012). We used .70 as a threshold (i.e., 50% overlap in variance) to detect 
risks for redundancy (Gaskin, 2016). The factor correlation matrix obtained from the promax rotation method revealed 
that the absolute values of correlations between factors were .72, .64, .61, .58, .57, and .31. When using the direct 
oblimin rotation method, the absolute values of factor correlations were .55, .54, .52, .47, .44, and .16—showing lower 
factor correlations compared to the results obtained from the promax method. Cross-loadings (defined as multiple 
loadings being differed by less than .20) are another indicator for lack of discriminant validity of a multidimensional 
measurement model. Upon our review of cross-loadings and inter-factor correlations, we concluded that the four 
factors met the minimum requirements for the discriminant validity of a multidimensional model. However, the 
Persistence factor’s correlation levels with other factors were at the high end (.61, .72, and .58). We recognized that 
by removing six items of the Persistence factor, the evidence for the discriminant validity of the three-factor model of 
14 items would be stronger. 
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Table 1. Results of the Four-Factor Solution Derived from Exploratory Factor Analysis (n = 225) 

Factor Item* Mean SD Rotated Loadings in Pattern Matrix 
Factor 1 Factor 2 Factor 3 Factor 4 

1. Capacity 

C1 5.85 1.17 .84 -.00 .09 -.10 
C2 5.95 1.10 .79 -.03 -.13 .02 
C3 5.33 1.36 .67 .05 -.01 .03 
C4 5.78 1.10 .57 .13 -.06 .22 

2. Learning 

L1 5.39 1.36 -.08 .86 -.01 -.09 
L2 5.24 1.19 .11 .70 .07 -.16 
L3 5.51 1.07 .08 .63 -.15 .29 
L4 5.53 1.28 .01 .59 .12 .07 
L5 5.14 1.49 .16 .51 .10 -.02 
L6 5.55 1.48 -.05 .49 -.03 .28 

3. Workload 

W1 3.87 1.88 .10 -.15 -.79 .07 
W2 3.56 1.91 -.00 .07 -.78 -.10 
W3 3.23 1.73 -.21 -.01 -.69 .02 
W4 3.83 1.88 .17 .02 -.47 -.15 

4. Persistence 

P1 5.19 1.50 .11 -.11 .06 .64 
P2 5.12 1.43 -.09 .22 .03 .61 
P3 5.11 1.52 .05 -.13 .23 .59 
P4 5.38 1.23 .20 -.07 -.13 .50 
P5 4.87 1.56 -.14 .03 .09 .50 
P6 4.66 1.52 .08 .04 .20 .48 

Factor correlation matrix 

Factor 1 1.00 - - - 
Factor 2 .64 1.00 - - 
Factor 3 .31 .57 1.00 - 
Factor 4 .61 .72 .58 1.00 

* See Appendix A for full statements of individual items.  
 
 
We also reviewed the scree plots of the three-factor solution and the four-factor solution (Figure 1a and Figure 1b). 
The scree plot in Figure 1a clearly presented three possible factors (three dots above the ‘elbow’), while an indication 
of four factors in the scree plot in Figure 1b was rather weak. These analyses supported our earlier estimation that the 
three-factor model might be a stronger option than the four-factor model, and we decided to test this hypothesis during 
the subsequent CFA. 
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Figure 1a. Scree plot of the three-factor solution. 

 
 
 

Figure 1b. Scree plot of the four-factor solution 

 
 
 
Confirmatory Factor Analysis  
 
Purpose 
 
We conducted CFA to test the EFA-derived hypothesis that ‘attitudes toward team projects’ is a multidimensional 
construct, composed of three and four factors. To do so, we collected a new dataset, and used SPSS and AMOS v. 23 
for data analysis. 
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Sample and Data Collection 
 
We administered the 20-item survey to a total of 379 undergraduate students enrolled in the COEN courses at the 
same mid-sized university during Spring semester of 2016—including 167 students in two 100-level courses and 212 
students in eight 300/400-level courses (Note: 212 = 266 [the total headcounts in eight 300/400 level courses] – 54 
[the number of students who were enrolled in two of the eight courses]). The 100-level courses were ‘Introduction to 
Engineering’ courses. The 300/400-level courses were senior-level project-based courses offered by different 
departments of the College of Engineering (Computer Science, Electrical and Computer Engineering, Materials 
Science and Engineering, and Mechanical and Biomedical Engineering). None of the 379 students participated in the 
EFA study during 2015. Among 379 students, 353 students (93.1%) voluntarily and anonymously submitted the 
survey—we used an anonymous survey to encourage students to provide honest responses. Students’ demographic 
information is presented in Error! Reference source not found..  
 
 

Table 1. Demographic Information 
  EFA (n = 235) CFA (n = 379)a COEN (n = 2261)b 

Category Sub-Category n % n % n % 

Gender Female 49 20.9 68 17.9 330 14.6 
Male 186 79.1 311 82.1 1,931 85.4 

Race / 
Ethnicity 

White  146 62.1 241 63.6 1,479 65.4 
Hispanic/Latino 23 9.8 32 8.4 214 9.5 
Asian 7 3.0 21 5.5 85 3.8 
American Indian/Alaska Native 1 0.4 2 0.5 9 0.4 
Black/African American 0 0.0 2 0.5 24 1.1 
Native Hawaiian/Pacific Islander 0 0.0 0 0.0 6 0.3 
Multi-racial 11 4.7 13 3.4 90 4.0 
Not reported 47 20.0 68 17.9 354 15.7 

Citizenship 

U.S. Citizen/Permanent Resident 173 73.6 290 76.5 1,864 82.4 
Non-Resident Alien 62 26.4 89 23.5 397 17.6 
(Kuwait) (52) (83.9) (51) (57.3) (265) (66.8) 
(Saudi Arabia) (8) (12.9) (20) (22.5) (79) (19.9) 
(Nepal, China, South Korea) (0) (0.0) (10) (11.3) (26) (6.5) 
(Others) (2)  (3.2)  (8)  (9.0)  (27)  (6.8) 

Enrollment 
Status 

Full-time 220 93.6 306 80.7 1,906 84.3 
Part-time 15 6.4 73 19.3 353 15.6 
Unknown 0 0.0 0 0.0 2 0.1 

a 93.1% of this sample group participated in the CFA study. Because we used an anonymous survey, we cannot report the demographic information 
of the actual participants.  
b Undergraduate students enrolled in the College of Engineering during Spring, 2016. 
 
 
Data Screening 
 
We screened the data using methods similar to those we used during the EFA. We first removed one unengaged case 
(std. dev. < 0.5). Then, we found 21 cases with one, two, or three missing values; we removed five cases that contained 
two or three missing values (10-15% of 20 items). The remaining 16 missing values in 16 cases (one missing value in 
each case) were completely missing at random (Little’s MCAR test: c2 = 208.40, df = 209, p = .499), and we replaced 
the missing data values using the expectation maximization technique. This complete dataset of 330 cases met the 
univariate normality criteria (Table 2), satisfying the univariate normality assumption for CFA. Another assumption 
in the conduct of ML-estimated CFA is multivariate normality (Brown, 2015; Byrne, 2010). To improve multivariate 
normality of our data, we removed 17 multivariate outlier cases by using the Mahalanobis distance method and 
reduced the multivariate kurtosis’ critical ratio from 31.3 to 16.4. However, we were not able to meet the recommended 
threshold of 5.0 (Byrne, 2010, see p. 104). We tested measurement invariance between the 100-level students (n = 
145) and the 300/400-level students (n = 185), and found both configural invariance (CFI = .949, TLI = .941, RMSEA 
= .030 [90% CI = .026 - .034, p = 1.000], SRMR = .045) and metric invariance (c2 difference = 13.98, df = 40, p = 
1.000), allowing us to use the composite set of data in our CFA. 
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Validation of the Multidimensional Structure 
 
We performed pooled CFA with the data to assess the measurement model of all four latent constructs together, and 
then compared the outcomes of the four-factor model with the results of the alternative three-factor model. 
 
Goodness-of-fit: The fit indices thresholds we used and the fit statistics that we obtained from our study are presented 
in Table 3. All of the overall fit statistics, compared against the thresholds, indicated close fit of the four-factor model 
to the data. Standardized residuals under |2.5| indicate good model fit (Hair et al., 2010, see p. 689). All standardized 
residuals obtained from our data were below the threshold. 
 
However, most of the items in the Persistence factor as well as L6 and W4 showed low factor loadings (Table 2). 
After removing these items, the respecified three-factor model showed an improvement in fit statistics (see Table 3), 
supporting the three-factor model as a preferred solution, as was hypothesized at the end of our EFA. We also tested 
a respecified two-factor model by combining the Capacity and Learning factors as one factor and keeping the 
Workload factor as a separate factor. We found that the two-factor model was clearly inferior to both the three- and 
four-factor models in terms of the fit statistics. Thus, we chose the respecified three-factor model of 12 items as our 
final solution and further tested the validity of the multidimensional model structure during the remaining analyses.  
 
 

Table 2. Descriptive Statistics, Factor Loadings, and Reliability Results from Confirmatory Factor Analysis 

Factor Item Mean SD Skewness Kurtosis Factor 
Loadinga Sig. Cronbach a CR 

Capacity 

C1 5.70 1.27 -0.89 0.44 .83 p < .001 

.86 .86 C2 5.56 1.26 -0.70 -0.13 .77 p < .001 
C3 4.88 1.37 -0.44 -0.10 .75 p < .001 
C4 5.66 1.17 -0.73 0.30 .75 p < .001 

Learning 

L1 5.07 1.30 -0.45 -0.36 .75 p < .001 

.86 / .85 c .86 / .86 c 

L2 5.38 1.20 -0.57 0.14 .78 p < .001 
L3 5.49 1.20 -0.63 0.25 .71 p < .001 
L4 5.11 1.21 -0.29 -0.20 .77 p < .001 
L5 5.02 1.51 -0.43 -0.56 .69 p < .001 
L6b 5.25 1.58 -0.70 -0.47 .58 p < .001 

Work-load 

W1 3.71 1.79 0.31 -1.01 .76 p < .001 

.80 / .79 c .80 / .79 c W2 3.67 1.72 0.23 -0.80 .78 p < .001 
W3 3.21 1.63 0.53 -0.54 .69 p < .001 
W4b 3.92 1.75 0.13 -0.90 .58 p < .001 

Persistence 

P1b 5.03 1.46 -0.64 -0.07 .60 p < .001 

.79 .79 

P2b 5.20 1.31 -0.58 0.14 .70 p < .001 
P3b 5.02 1.64 -0.60 -0.46 .64 p < .001 
P4b 5.29 1.25 -0.60 0.05 .48 p < .001 
P5b 4.52 1.59 -0.28 -0.66 .61 p < .001 
P6b 4.36 1.36 -0.17 -0.23 .67 p < .001 

a Standardized estimates 
b Removed from further analysis 
c Value without the removed items 
 
 
Convergent, discriminant, and nomological validity of the multidimensional model structure: We followed Hair et 
al.’s (2010) guidelines for assessing the construct validity of the 12-item measurement model structure during CFA. 
A primary objective of CFA is “to assess the construct validity of a proposed measurement theory” and construct 
validity in CFA refers to “the extent to which a set of measured items actually reflects the theoretical latent construct 
those items are designed to measure. Thus, it deals with the accuracy of measurement” (p. 686).  
 
For convergent validity of the instrument’s multidimensional structure, we used multiple methods, as suggested in 
Hair et al. (2010). We first reviewed factor loadings since “high loadings on a factor would indicate that they converge 
on a common point, the latent construct” (p. 686). All factor loadings should be statistically significant and 
“standardized loading estimates should be .5 or higher, and ideally .7 or higher” (p. 686). Our data showed that all 12 
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factor loadings were statistically significant. All factor loadings also met the .70 threshold (except that L5 and W3 
were .69 and .68). Cronbach’s alpha (a) levels and the composite reliability (CR) values were also above the threshold, 
.70, indicating satisfactory levels of internal consistency among items used in each factor (see Table 2). The ‘alpha if 
item deleted’ statistics showed that removal of any items would rather decrease the current Cronbach’s alpha levels, 
indicating that all current items in each factor are contributing to maintain the internal consistency of the measurement. 
Based on these results, we concluded that the multiple items in each factor represent the same dimension.   
 
We assessed discriminant validity of the multidimensional measurement model by using multiple methods as well. 
We reviewed the factor correlations first. Factor correlations of .85 or above indicate problematic CFA-based 
discriminant validity of a multi-factor model (Brown, 2015, see p. 146). All factor correlations in our study (.77, -61, 
and .37 as shown in Figure 2) were below the cutoff criterion .85. We then conducted chi-square difference tests on 
three pairs of the three factors. All chi-square difference tests revealed significance, indicating that two factors in each 
pair represent distinct factors (Table 5). These two tests supported the discriminant validity of the three-factor model. 
We conducted a more rigorous average variance extracted (AVE) test—if each factor’s AVE value is greater than its 
squared correlation estimates with other factors, it supports the discriminant validity of the multiple factors (Hair et 
al., 2010, p. 688). All AVE values were greater than the squared correlation estimates, except that the Capacity factor’s 
AVE value (.55) was slightly smaller than its squared factor correlation with the Learning factor (.59) (Table 6).  
 
Another type of construct validity of a measurement model is nomological validity, which assesses if the constructs 
are expected to relate to one another in a theoretically consistent way (Hair et al., 2010). We assessed nomological 
validity of our multidimensional model by reviewing the factor correlation matrix (.77, -61, and .37 in Figure 2). All 
factor correlations supported the expectation that the Workload factor (when not reverse-coded) is negatively related 
with other factors, while the remaining three factors are positively related with each other. All factor correlations were 
also statistically significant at the .001 level. The correlation pattern among the factors made sense, and we concluded 
that nomological validity was achieved.  
 
 

Table 3. Thresholds for Fit Indices and Study Results 
Thresholds & Results c2, df, p CFI TLI RMSEA SRMR 

Thresholds 

Hair et al., 2010, p. 654 

Non-significance; 
however, significant p 
values expected when 
N > 250 and 12 < 
variables < 30 

≥ .92 ≥ .92 
< .07 with 
CFI of .92 
or higher 

≤ .08 with 
CFI of .92 
or higher 

Brown, 2015, p. 74 

Non-significance; 
however, rarely used 
as sole index of model 
fit 

Close to .95 
or higher 

Close to .95 
or higher 

Close to .06 
or below 

Close to .08 
or below 

Results 

Four-Factor Model of 20 
Items 

c2 = 293.93, df = 164, 
p < .000 .954 .947 

.049 (90% 
CI = .040 - 
.058, p = 
.556) 

.045 

Three-Factor Model of 
12 Items (L6, W4, and 
Persistence factor 
removed) 

c2 = 78.79, df = 51, p 
= .008 .985 .980 

.041 (90% 
CI = .021 - 
.058, p = 
.802) 

.038 

Two-Factor Model of 12 
Items (Capacity and 
Learning factors 
combined) 

c2 = 238.08, df = 53, p 
< .000 .899 .874 

.103 (90% 
CI = .090 - 
.117, p < 
.000) 

.068 
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Table 4. Chi-Square Difference Tests Results 
Model 2 with more 

parameters, fewer df 
Model 1 with fewer 

parameters, more df c2
model1 - c2

model2 dfmodel1 - dfmodel2 Sig. 

2-factor model  
(Capacity x Learning) 

1-factor model  
(two factors combined) 164.30 - 26.20 = 138.10 27 - 26 = 1 p < .001 

2-factor model  
(Capacity x Workload) 

1-factor model  
(two factors combined) 257.97 - 24.21 = 233.76 14 - 13 = 1 p < .001 

2-factor model  
(Learning x Workload) 

1-factor model  
(two factors combined) 190.38 - 39.34= 151.04 20 - 19 = 1 p < .001 

 
 

Table 5. AVE Values (Diagonal) and Squared Correlations between Latent Variables (Off-Diagonal) 
Factor Capacity Learning Workload 
Capacity .60 - - 
Learning .59 .55 - 
Workload .14 .37 .56 

 

 

Figure 2. A path diagram with standardized estimates for the hypothesized  
three-factor model of a 12-item survey measuring learners’ attitudes toward team projects. 
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Instrument Finalization  
 
During the CFA, we assessed if the EFA-generated survey instrument measures a multidimensional construct 
regarding engineering students’ attitudes toward team projects. Based on the results obtained from the series of 
analyses on the validity of the multidimensional model structure, we drew a conclusion that an alternative three-factor 
model of 12 items without L6, W4, and six items of the Persistence factor presents clearer evidence for the 
multidimensional structure than the four-factor model of 20 items. We call the final instrument of 12 items the 
Attitudes toward Team Projects Scale on Capacity, Learning, and Workload (ATPS-CLW).  
 

CONCLUSIONS 
 
A Way to Measure Learners’ Attitudes toward Team Projects  
 
People form their attitudes toward an object based on their previous experience with it. Students’ attitudes toward 
team projects are likely formed based on their previous experience with team projects, observing benefits and 
challenges in participating in team projects. When designing engineering courses with team-based learning methods, 
instructors should be aware of students’ attitudes toward team projects up front, in order to provide effective 
instructional strategies to facilitate the development of effective teams and to prevent dysfunctional teams. However, 
since a latent variable such as ‘attitudes toward team projects’ is not directly observed, it is difficult to measure and 
quantify the degree of students’ attitudes toward team projects without using a valid and reliable measurement scale. 
 
The purpose of developing this survey instrument was based on our practical needs for better understanding our 
students’ attitudes toward team projects during a learner analysis and finding ways to provide them with better learning 
experiences while they are completing team projects. Researchers use factor analysis to develop an instrument to 
measure latent constructs—such as ‘attitudes toward team projects.’ EFA is usually used “to identify the latent 
constructs or to generate hypotheses about their possible structure” whereas CFA is used “to evaluate hypothesized 
structures of the latent constructs and/or to develop a better understanding of such structures” (Bandalos & Finney, 
2010, p. 93). We conducted both EFA and CFA and found one way to measure students’ attitudes toward team 
projects. From EFA, we found a four-factor model of 20 items that measure different aspects of attitudes toward team 
projects—Capacity, Learning, Workload, and Persistence. However, we recognized that by removing the Persistence 
factor (six items), the evidence for the discriminant validity of the three-factor model of 14 items would be stronger. 
We tested this hypothesis in the subsequent CFA. Based on the CFA results, we decided to exclude the Persistence 
factor as well as two other items due to the low factor loadings, giving us a three-dimensional structure of a 12-item 
scale. We intended this scale to be used as a learner assessment tool to measure and diagnose students’ attitudes toward 
team projects. The multiple items in each of the three factors address specific aspects (variables) of the factor, 
reflecting benefits or challenges associated with team projects.  
 
Limitations of the Study  
 
We recognized several limitations of our survey development process. First, in retrospect, the study could have 
benefited by having another expert panel review the survey items before finalizing them. Second, we used a 
convenience sample (and purposive sample because we recruited students from project-based courses) rather than a 
random sample as the scale development sample. Also, the CFA data met the univariate normality criteria, but failed 
to meet the multivariate normality threshold. These characteristics of the development sample could be threats to 
external validity, limiting generalization of the results.  
 
There are several limitations regarding our statistical analyses as well. First, we spent a great amount of time during 
the exploratory factor analysis due to its nature that allows an infinite number of ways to extract common factors. We 
attest to the common criticism about subjectivity involved in EFA (Hayton, Allen, & Scarpello, 2004). Since the EFA 
process allows researchers to ‘explore’ an infinite number of possibilities before arriving at a chosen factor solution, 
much responsibility lies in the researchers’ expertise in the subject matter. At the same time, we recognize that the 
decision to use our expertise as both researchers and educators can be criticized for making biased decisions during 
the EFA process.  
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We specified the scale name with the suffix ‘CLW’ to emphasize that the scale is limited to measuring only these 
three dimensions of attitudes toward team project. In our CFA study, the six items of the Persistence factor were not 
confirmed as a strong dimension, and we attribute this mainly to measurement errors. The wordy items included in 
the Persistence factor (e.g., “When working in a team, I become more willing to put in additional time and effort 
required to complete challenging tasks than when working alone.”)—although they were derived from our local need 
(to use them for learner analysis)—could make the factor prone to measurement errors.   
 
Significance of the Study and Classroom Applications 
 
Despite the limitations, we want to highlight several strengths of our study. One strength is that we used both EFA 
and CFA to develop the scale. When researchers conduct EFA to develop an instrument, they present a model that is 
yet to be confirmed. The structural measurement model identified from an EFA study represents only one possible 
type of the relationships among the variables, and other models may represent the data just as well (Bandalos & 
Finney, 2010). In our study, we conducted EFA and developed a multidimensional structure of the measurement 
model. We then conducted CFA to validate the multidimensional structure of the instrument. Also, as we discussed 
in the Overall Research Purpose section, we have not found research that reports the development of a survey 
instrument that measures engineering students’ attitudes toward team projects, using both EFA and CFA. During the 
EFA and CFA processes, we used a variety of statistical assessment methods based on multiple sources. We hope that 
the detailed EFA and CFA processes that we described in this article are helpful to other researchers who wish to 
conduct studies with similar purposes. The descriptions of the study limitations that we presented above should also 
alert other researchers regarding what they may experience during their research and help them avoid negative 
outcomes.  
 
Another significance of our study is that the ATPS-CLW when used as a learner analysis tool—as we intended—can 
help instructors be proactive in diagnosing positive and negative aspects of team projects that could influence students’ 
attitudes toward team projects. In instructional design—similar to the engineering practice—diagnosis should precede 
solutions. Once learners’ characteristics such as attitudes toward team projects are diagnosed, instruction can be 
designed with adequate strategies that accommodate the learners’ needs. We emphasize the importance of gathering 
data to better understand learners’ characteristics during the front-end of team project-based instruction. The data 
obtained from the ATPS-CLW could assist while employing team-building strategies such as: developing a team 
charter (to set ground rules with which all team members agree to comply), assigning a team leader (to select a person 
who may take on a project manager’s role), and conducting self/peer evaluations during team projects (to facilitate 
reflection on areas for improvement, focusing on individual team members’ responsibilities and coordination) (for 
more information on various team-building strategies, see Johnson & Johnson, 1991; Johnson, Johnson, & Smith, 
2006; Slain, 1995; Smith, 2014).  
 
The use of the ATPS-CLW as a learner analysis tool prior to team project-based instruction also emphasizes the fact 
that just because a group of students are assigned to a team, it does not mean they would automatically function as an 
effective team (Johnson & Johnson, 1999). Some cooperative teams may become dysfunctional teams, showing 
symptoms such as low levels of academic performance, high frequency of off-task behaviors, and low levels of peer 
support (Hsiung, 2010). Instructors need to take preventative actions. Engineering instructors who use team projects 
in class may administer the scale with students during the first week of the course as part of their learner analysis 
activity and review average scores for the 12 items to assess students’ overall attitude levels (note that the Workload 
items should be reverse-coded) and average scores for individual factors to analyze specific dimensions of their 
attitudes. After using the scale in multiple semesters, instructors may be able to recognize the attitudinal characteristics 
of exemplary teams (success cases) and dysfunctional teams (non-success cases), and use the data as criteria to 
determine whether students in subsequent classes are functioning close to the exemplary level or need to improve their 
attitudes toward team projects to become more effective team members. This approach of evaluating success cases 
and non-success cases (a.k.a. “the success case method” in Brinkerhoff, 2003) would help avoid “the tyranny of the 
mean effect” (focusing only on the average and overlooking the fact that the average does not provide sufficient 
information about the actual data distribution) and provide opportunities to transform dysfunctional teams to effective 
teams. 
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Similar to using a pretest as a pre-instructional strategy that alerts learners to what they are about to learn and facilitates 
their subsequent learning process (Hartley & Davis, 1976), instructors may use the ATPS-CLW as not only a learner 
analysis tool but also part of their pre-instructional strategy. Administering the ATPS-CLW in the beginning of a team 
project followed by an instructional module on effective team building could alert learners to the benefits and 
challenges associated with working in a team environment and help them increase awareness and readiness to exhibit 
desirable teamwork behaviors. In doing so, instructors may also incorporate other scales—for example, the Group 
Work Contribution Scale (GWCS) to measure learners’ teamwork behaviors such as how much effort, initiative, 
responsibility, and back-up behavior learners need to use during their team project (Joo & Dennen, 2017). Especially, 
the four items from the GWCS’s back-up behavior dimension can be used to measure and develop learners’ 
willingness to provide peer assistance to their teammates (help teammates who are unable to fulfill their roles; correct 
teammates’ mistakes; provide constructive feedback on teammates’ work; help others beyond my assigned tasks).     
 
Suggestions for Future Research  
 
We developed the ATPS-CLW based on our practical local needs for using a valid survey instrument to measure 
students’ attitudes toward team projects during a learner analysis of the systematic instructional design process. Our 
study has shown that the ATPS-CLW measures capacity-, learning-, and workload-related dimensions of learners’ 
attitudes toward team projects. We would like to suggest developing a more comprehensive scale by adding other 
dimensions to the scale. For example, the Persistence dimension can be redesigned and tested again. We offer some 
suggestions for survey item development. Although using a mix of positively- and negatively-stated items has been 
recommended to help reduce response biases by some researchers (Cronbach, 1942), it can also become a threat to 
the scale validity (Weem, Onwuegbuzie, & Lusting, 2003) because negatively-worded items may “produce artifactual 
relationship on the questionnaire” (Podsakoff, MacKenzie, Podsakoff, & Lee, 2003, p. 882). In our study, since the 
Workload factor consists of all negatively-worded items, it would be possible to criticize that the Workload factor was 
created due to this method bias. While this is a reasonable criticism, we offer the following evidence to argue 
otherwise. First, not all 14 negatively-worded items fell under the same factor. Second, the items included in the 
Workload factor share a common, meaningful attitudinal tendency—wanting to avoid workload-related challenges. 
Third, the respecified two-factor model (dividing positively- and negatively-worded items into separate factors) 
showed poor fit indices. Nonetheless, using a balanced number of positively- and negatively-worded items in a scale 
is no longer considered the best practice. Common recommendations in scale development include using only 
positively-worded items, or if mixing positively- and negatively-worded items, alerting respondents to the presence 
of negatively-worded items by grouping them together and providing additional instruction (Roszkowski & Soven, 
2010). Since the three items in the workload-related challenges dimension in the ATPS-CLW are negatively worded 
while other items are positively worded, we recommend that instructors and researchers use the latter method—
providing informational directions before presenting the group of three negatively-worded items.   
 
Continuous testing of the validity of the scale is also necessary. When it comes to the validity of a measurement 
instrument, “there are multiple aspects to consider,” and it is not possible to present all aspects of validity evidence in 
one research report (Douglas & Purzer, 2015, p. 111). In order for the instrument to be applicable to others, it needs 
continuous testing and validation. We used a male-dominant sample of undergraduate engineering students who were 
attending classes on campus. Future research may be conducted with samples of students containing balanced 
proportions of male and female members, students taking online courses, and professionals in the workplace who 
participate in face-to-face or virtual teams.  
 
It is also important to recognize the demographic composition of the student body in engineering classrooms. In recent 
years, there has been an increasing number of international students attending science and engineering institutions in 
the U. S. (National Science Foundation, 2014). In our institution during 2015 and 2016, 17.6% of the COEN 
population and 26.4% and 23.5% of the EFA and CFA samples respectively were international students (Table 2). 
The majority of the international students enrolled in our COEN programs (and participated in our study) were from 
the Middle-East Asia (Kuwait and Saudi Arabia). Their prior experience of teamwork in their culture may or may not 
be the same as the students who grew up in the U.S. In the institutions that have international students from other parts 
of the world (e.g., Eastern Asia such as China and South Korea, South-Central Asia such as India, Europe, or countries 
in the Southern Hemisphere), instructors may observe different types of relationships among team members. 
Quantitative data obtained from a survey instrument such as the ATPS-CLW would not provide sufficient information 
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to understand potential differences in learners’ attitudes toward team projects influenced by their cultural background. 
In addition to using an instrument such as the ATPS-CLW, we recommend also employing a qualitative research 
approach in order to have a deeper understanding of students’ cultural background that may influence their attitudes 
toward team projects. 
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APPENDIX A 
 

A Four-Factor Solution with 20 Items 

Factor Aspect Measurement Item Used 

Developing 
Professional Capacity 
for the Workplace 
(Capacity)  

Developing professional 
/career capacity  

C1. The more experiences I have working in teams, the better for 
developing my professional/career capacity.  

Developing project 
management skills 

C2. Participating in team projects helps me develop project 
management skills. 

Developing civic values  C3. Team projects help me adopt civic values needed to be part of a 
professional community. 

Developing professional 
skills 

C4. Working in teams helps me develop professional skills that are 
valuable in the workplace. 

Improving Learning 
and Problem Solving 
Skills (Learning) 

Improving application skills L1. Team projects help me see how principles and concepts apply to 
solving real problems. 

Improving analytic skills  L2. Communicating with team members helps me become analytic. 
Developing new 
perspectives 

L3. I gain new perspectives or useful insight from working with 
others in a team. 

Increased amount of 
learning L4. I learn a lot while completing a project with others. 

Increased interests in 
problem solving  

L5. Team projects help me become more interested in solving 
problems in the workplace.  

Efficient learning 
L6. I learn difficult concepts and applications more quickly when 
discussing them with team members than when learning them 
alone.* 

Avoiding Workload-
Related Challenges 
(Workload) 

Increased workload 
W1. I try to avoid team projects because I often have to take on 
more than my share of the workload because of low performing 
teammates.  

Dealing with different work 
ethics 

W2. I’d rather work alone because it is difficult to find teammates 
who have a work ethic similar to mine. 

Wasteful logistical issues W3. I want to avoid team projects because they involve a lot of 
wasted time to handle logistical issues. 

Overworked feelings W4. I dislike that I feel overworked during team projects.*  

Increasing Persistence 
for Better Outcomes 
(Persistence) 

Focusing on successful 
outcomes  

P1. Working in a team allows me to successfully produce products 
that I wouldn’t be able to do if working alone.*  

Overcoming difficulties 
through interaction  

P2. Having team members to talk with helps me persist through 
challenging tasks that I would have difficulty handling alone.*  

Willing to spend more time 
for better outcomes 

P3. I’d rather work in a team to produce a better quality product 
even if it takes longer than when I work alone.*  

Willing to accommodate 
others’ needs 

P4. I am willing to accommodate the varying schedules 
(availability) of team members to support better teamwork.*  

Willing to put more time 
and effort during difficulty 

P5. When working in a team, I become more willing to put in 
additional time and effort required to complete challenging tasks 
than when working alone.*  

Being persistent due to peer 
support 

P6. I become persistent when completing a team project because of 
the support that I receive from my team members.* 

* Excluded from the final 12-item scale.  
 
 


