62 research outputs found

    Mechanical tomography of human corneocytes with a nanoneedle

    Get PDF
    Atomic force microscopy (AFM) can image biological samples and characterize their mechanical properties. However, the low aspect ratio of standard AFM probes typically limits these measurements to surface properties. Here, the intracellular mechanical behavior of human corneocytes is determined using “nanoneedle” AFM probes. The method evaluates the forces experienced by a nanoneedle as it is pushed into and then retracted from the cell. Indentation loops yield the stiffness profile and information on the elastic and nonelastic mechanical properties at a specific depth below the surface of the corneocytes. A clear difference between the softer ∼50-nm-thick external layer and the more rigid internal structure of corneocytes is apparent, which is consistent with the current understanding of the structure of these cells. There are also significant variations in the mechanical properties of corneocytes from different volunteers. The small diameter of the nanoneedle allows this “mechanical tomography” to be performed with high spatial resolution, potentially offering an opportunity to detect biomechanical changes in corneocytes because of, e.g., environmental factors, aging, or dermatological pathologies

    A nearly complete database on the records and ecology of the rarest boreal tiger moth from 1840s to 2020

    Get PDF
    Global environmental changes may cause dramatic insect declines but over century-long time series of certain species’ records are rarely available for scientific research. The Menetries’ Tiger Moth (Arctia menetriesii) appears to be the most enigmatic example among boreal insects. Although it occurs throughout the entire Eurasian taiga biome, it is so rare that less than 100 specimens were recorded since its original description in 1846. Here, we present the database, which contains nearly all available information on the species’ records collected from 1840s to 2020. The data on A. menetriesii records (N = 78) through geographic regions, environments, and different timeframes are compiled and unified. The database may serve as the basis for a wide array of future research such as the distribution modeling and predictions of range shifts under climate changes. It represents a unique example of a more than century-long dataset of distributional, ecological, and phenological data designed for an exceptionally rare but widespread boreal insect, which primarily occurs in hard-to-reach, uninhabited areas of Eurasia.Peer reviewe

    Galvanic exchange platinization reveals laser-inscribed pattern in 3D-LAM-printed steel

    Get PDF
    Galvanic exchange involving dissolution of iron and the simultaneous growth of platinum onto 316 L stainless steel was investigated for specimens manufactured by 3D-printing, and the behavior was compared to conventional stainless steel. Novel phenomena associated with the 3D-printed steel, but not conventional steel, reacting in three distinct phases were observed: first, with low platinum loading, a bright etching pattern linked to the laser-manufacturing process is revealed at the steel surface; second, a nanostructured pore pattern with platinum nano-deposits forms; and third, a darker platinum film coating of typically 500-nm thickness forms and then peels off the steel surface with further platinum growth underneath. Unlike the conventional steel (and mainly due to residual porosity), 3D-printed steel supports well-adhered platinum films for potential application in electrocatalysis, as demonstrated for alkaline methanol oxidation. [Figure not available: see fulltext.]</p

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Assembly, conductivity, and chemical reactivity of sub-monolayer gold nanoparticle junction arrays

    No full text
    Assemblies of gold nanoparticles (nominal 20 nm in diameter) and poly-(diallyldimethylammonium chloride) (PDDAC) are formed on tin-doped indium oxide (ITO) and glass substrates in a layer-by-layer deposition process. Electron microscopy imaging suggests clustering and sub-monolayer formation even after multiple deposition cycles. Voltammetric characterisation of the gold-PDDAC assemblies demonstrates at low coverage a facile electron transport perpendicular to the film but essentially insulating characteristics laterally across an inter-electrode gap of gap of 40�m. However, gentle removal of the organic assembly components (PDDAC) in a room temperature UV-ozonolysis process allows the array of “clean” gold–gold junctions to become electrically conducting due to (i) random multiple tunnel junction pathways and (ii) ionic conductivity through a thin water layer. In this room temperature ozone-cleaned state, the gold assembly is considerably more electrically conducting when compared to thermally cleaned films. The crucial effect of humidity on the resistivity and capacitive currents for gold nanoparticle junction arrays is demonstrated. The gold nanoparticle films readily react with thiols and dithiols from the gas phase which results in a dramatic increase in resistivity. The process is fully reversible and the sensor re-usable after UV-ozonolysis cleaning. Measurements are reported for a range of dithiols with different carbon chain lengths demonstrating that tunnel junction effects are likely to be responsible for the electrical conductivity

    Apparent two-dimensional behavior of TiO2 nanotubes revealed by light absorption and luminescence

    No full text
    Optical absorption and photoluminescence (PL) properties of colloidal TiO2 nanotubes, produced by the alkali hydrothermal method, were studied at room temperature in the range 300-700 nm. Nanotubes having an internal diameter in the range 2.5-5 nm have very similar optical properties, in contrast to the expected behavior for quasi-1-D systems. This is explained by the complete thermal smearing of all 1-D effects, due to the large effective mass of charge carriers in TiO2, resulting in an apparent 2-D behavior of TiO2 nanotubes
    corecore