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Abstract 
 

Atomic Force Microscopy (AFM) can image biological samples and characterise their 

mechanical properties. However, the low aspect ratio of standard AFM probes typically limits 

these measurements to surface properties. Here, the intracellular mechanical behaviour of 

human corneocytes is determined using "nanoneedle" AFM probes. The method evaluates the 

forces experienced by a nanoneedle as it is pushed into and then retracted from the cell.  

Indentation loops yield the stiffness profile and information on the elastic and nonelastic 

mechanical properties at a specific depth below the surface of the corneocytes. A clear 

difference between the softer ~50 nm-thick external layer and the more rigid internal structure 

of corneocytes is apparent, consistent with current understanding of the structure of these cells. 

There are also significant variations in the mechanical properties of corneocytes from 

different volunteers. The small diameter of the nanoneedle allows this “mechanical 

tomography” to be performed with high spatial resolution, potentially offering an opportunity 

to detect biomechanical changes in corneocytes due (for example) to environmental factors, 

aging or dermatological pathologies.  
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Introduction 

Mammalian skin is an impressive piece of bioengineering that acts as an interface with the 

external environment and as a barrier not only to the penetration of potentially harmful 

materials but also, and most significantly, to the loss of tissue water (Elias, 2005; Madison, 

2003; Proksch et al., 2008). The latter objective is accomplished by the thin (10-20 µm on 

average) outer layer of the epidermis, the stratum corneum (SC) (Cork et al., 2009).  Because 

the maintenance of barrier homeostasis is an essential requirement, the SC must be flexible 

and must be able to adapt to body movement without rupturing.  The mechanics of how this is 

possible are unknown and a detailed investigation of the physical properties of the SC 

(elasticity, viscoelasticity, deformation) has not been performed.  That these properties may 

be expected to change significantly from the base of the SC to the skin surface is evident from 

the very steep hydration gradient across the membrane (Kalia et al., 1996); indeed, it is well-

known that xerotic skin is more fragile than that which retains a normal level of 

moisturisation (Rawlings and Harding, 2004; Ghadially et al., 1995).   

Atomic force microscopy (AFM) has been used previously to probe the mechanical 

properties of the SC
 
(Kasibuchi et al., 2002; Yuan and Verma, 2006; Gorzelanny et al., 2006; 

Fung et al., 2010).  However, these measurements have been made either on entire, isolated 

membranes, or on individual corneocytes that had been aggressively separated using organic 

solvent, resulting in significant variability in the parameters observed (Richter et al., 2001). 

Similarly, the elastic properties of intact stratum corneum varied considerably depending on 

the size of AFM probe employed, suggesting a significant difference between global 

mechanical properties (on the scale of >10 µm) and nanoscale, local properties (over distances 

of <100 nm) (Yuan and Verma, 2006). Consequently, the detailed mechanical behaviour of 

corneocyte monolayers, and that of specific intracellular or surface structures, has not been 

characterised.  
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A common application of AFM uses indentation to study mechanics at the nanoscale 

(Weisenhorn et al., 1993; Radmacher, 1997).
 
Different modifications of this technique, 

covering a wide force range from 10
-12
 to 10

-5
 N, have been used to measure the structure-

property relationships of both technical materials and biological tissues. However, the 

pyramidal shape and low aspect ratio of standard AFM probes means that mechanical 

properties deep inside the cell cannot be determined, and limits the method to the evaluation 

of surface properties. There have been some attempts to use standard, pyramidal AFM probes 

to estimate the stiffness of cell structures buried beneath the indentation spot (Fuhrmann et al., 

2011; Roduit et al., 2009) using the method of 'AFM stiffness nanotomography', and distinct 

differences between the mechanical properties of the ‘normal’ cell lines considered and the 

unusual 'crumbling' behaviour of cancerous cells have been demonstrated (Fuhrmann et al., 

2011). However, any quantitative analysis of the 'force-displacement' curves obtained with 

standard AFM probes for deep indentations quickly becomes quite complicated as cells often 

show complex, nonlinear, viscoelastic behaviour and are highly heterogeneous both 

structurally and morphologically (Fletcher & Mullins, 2010). Also, the accuracy of 

estimations of internal structure stiffness falls off dramatically with increasing depth into the 

cell. 

Recently, high aspect ratio structures (sometimes called “nanoneedles”) have been shown 

to penetrate biological cells to large depths, enabling, for example, manipulation of internal 

structures and microinjection of materials such as DNA (Han et al., 2005; Obataya et al., 

2005; Patil et al., 2004; Vakarelski et al., 2007). 
 
A major advantage of these nanostructures is 

their ability to enter the cell without causing damage to its overall structure and thereby 

avoiding disruption of cell function. However, nanoneedles have not yet been used either to 

elucidate the mechanical properties of skin cells and or to study, at nanoscale resolution, their 

intracellular structures in situ. It is hypothesised that a clearer understanding of differences in 

the mechanical properties of normal versus ageing or diseased SC, and their relationship to 
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the quality of the membrane and to mechanical rupture, may ultimately lead to new 

therapeutic and/or diagnostic interventions to safeguard barrier function. 

 

Results and Discussion 

  “Nanoneedles” with lengths of ~500 nm, and diameters from 30 to 80 nm, were 

created on the apex of standard AFM probes (Beard and Gordeev, 2011). The resulting 

structures were principally composed of amorphous carbon and had an approximately 

cylindrical shaft with a hemispherical apex (Figure 1a). Such nanoneedles are mechanically 

robust, survive large mechanical deformations without breaking, and recover elastically for 

deformations of up to 60% of their length.  

Nanoindentation experiments were performed on corneocytes isolated from human 

stratum corneum (SC) using a simple adhesive stripping process. Corneocytes are flat, plate-

like cells, typically ~0.5 µm thick and 10-30 µm across; they lack nuclei or organelles and are 

composed of a cross-linked protein envelope surrounding an internal matrix composed 

primarily of keratin filaments. Figure 1b (courtesy of L. Norlén, personal communication) 

shows a high-magnification image of part of a corneocyte from human SC; the latter is often 

characterised as a structure of corneocyte ‘bricks’ separated by well-organised lamellae of 

intercellular lipids (the ‘mortar’) (Al-Amoudi et al., 2005; Harding, 2004). The cornified 

envelopes of the cells appear as darker zones at the interface between the intercellular lipids 

and the intracellular keratin matrix of the corneocytes; as illustrated in Figure 1b, the 

thickness of the cornified envelope is variable, both within and between cells, ranging from 

20 to more than 50 nm.  

 Figure 1c schematically illustrates the progressive penetration of nanoneedles into the 

corneocytes as performed in this work. Initially, the nanoneedle probe interrogates the 
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mechanical properties of the cell's lipid-protein envelope. With increasing applied force, the 

probe breaks through the envelope deeper into the cell and can then measure the mechanical 

properties of the internal matrix of keratin filaments and intracellular structures. 

 The AFM oscillation mode (or 'tapping-mode') images in Figures 2a and 2b compare 

the corneocyte surface structure immediately before and after indentation using a nanoneedle 

probe of 40 nm diameter. The indent creates a small pore in the corneocyte surface without 

damage to the cell’s overall structure. Figure 2c shows this more clearly and compares cross-

sectional profiles along the same line on the cell surface before and after the indentation 

(Figures 2a and 2b). The affected area is ~200 nm in diameter. Because of the nature of the 

corneocytes, the pore preserves its shape during nanoindentation, and does not seal over the 

time-frame involved. This simplifies the analysis of these results, as it is not necessary to take 

into account any dynamic changes in cell organisation. 

 Figure 3a gives examples of loading curves recorded during AFM indentation with a 

nanoneedle of 75 nm in diameter for several corneocytes from the same volunteer (aged 25 

years). Figure 3b shows a set of loading curves for another volunteer (also 25 years old) 

obtained using a nanoneedle of similar diameter for four indents reaching different depths. 

The force (F), experienced by the nanoneedle when it is pushed into the cell, is proportional 

to the cantilever's deflection (D) and can be calculated as F = k�D, where k is the cantilever 

spring constant (35 N/m in this case).  It follows that the curves in these figures indicate both 

the deflection and the force as a function of the vertical piezo-displacement (∆Z) of the AFM 

probe relative to the corneocyte surface. The cantilever deflection is significantly smaller than 

its vertical displacement, reflecting the choice of comparatively rigid AFM probes with k = 

30-80 N/m for these experiments. The vertical position (h) of the nanoneedle tip with respect 

to the corneocyte surface, and hence the cell's deformation (indentation depth) produced by 

the nanoneedle, are equal to the vertical position of the cantilever base minus its deflection 
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(i.e., h = [∆Z – D]), and is mostly determined by ∆Z. The measured curves differ between 

separate indents corresponding most likely to variations in the structures encountered by the 

nanoneedle probe as it penetrated the cell. Near the surface, the mechanical inhomogeneity of 

the corneocyte could possibly be due to the probe coming into contact with desmosomal 

structures, the ‘rivets’ holding adjacent corneocyte layers together prior to their degradation in 

the upper SC and ultimate desquamation from the skin (Harding, 2004).  It seems not unlikely 

that the cell surface mechanical properties on, or in the vicinity of, a desmosome may be 

different. Deeper in the cells, the observed variations are perhaps due to the nanoneedle 

encountering the protein filaggrin at different stages of its breakdown into ‘natural 

moisturising factor’ (Harding, 2004).  

 The loading curves have a common trend. When the probe is pushed into the cell, the 

resistance experienced by the nanoneedle increases (for Z > 40-80 nm in Figure 3). Given the 

general corneocyte structure (as illustrated in Figure 1b), the observed increase in the force 

gradient is attributed to the start of the interaction of the nanoneedle with the stiffer cell 

interior. The thickness of the surface layer incorporating the protein envelope varies 

significantly between cells and between individuals (Figure 1b) and this was observed in 

these experiments too.  

The inset in Figure 3b illustrates this point with data, obtained with the same nanoneedle, 

showing the indentation of corneocytes from two volunteers aged 25 and 54 years. For the 

older volunteer, the abrupt increase in cell stiffness occurs at a depth of 32 nm, whereas the 

corresponding value for the younger individual is 43 nm.  It is also clear from the shape of the 

loading curves that the force required to penetrate the corneocyte to the same depth is greater 

for the older volunteer. While these results are consistent with the skin thinning and becoming 

more brittle with increasing age, the significance of the difference seen cannot be assessed 

until many more subjects in different age groups have been studied. 
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The shape of the loading curves at low ∆Z values reflects the forces experienced by the 

nanoneedle as it penetrates through the surface layer; an example in Figure 4a exhibits a clear 

maximum, similar to that observed when AFM probes have penetrated through the plasma 

membrane of living cells (Fuhrmann et al., 2011; Obataya et al., 2005). 
 
However, in that case, 

the penetration force was much smaller (~1 nN) compared to that (~100 nN) for corneocytes. 

This makes sense given the presence of the cornified envelope.  The exterior of the skin cell is 

also more brittle than the plasma membrane of living cells and, as shown below, cannot 

sustain large deformations. Thus, the behaviour shown in Figure 4a most probably reflects 

penetration through the external lipid-protein layer at the corneocyte surface to the 

mechanically softer material beneath. The force starts to increase when the nanoneedle hits 

the internal keratin structure of the cell (for Z > 290 nm, corresponding to ∆Z > 50 nm in 

Figure 4a). 

More typically, loading curves do not show such a maximum corresponding to the 

surface layer; rather, a decrease in the gradient is observed for depths between 10 and 40 nm 

(see Figure 3b inset). This indicates that the local stiffness of the surface layer does not vary 

significantly until the internal structure is reached. Taking the force at ∆Z = 50 nm as an 

estimation of that required to penetrate the external surface layer, the histogram inset in 

Figure 3a was derived from the loading curves, some examples of which are shown in the 

main panel for the subject in question.  The penetration forces ranged from 90 to 220 nN 

(average = 147 nN). For four subjects of similar ages (19-28 years), the overall spread of the 

penetration force was 30 to 260 nN.  

 Loading curves contain detailed information about the forces experienced by the 

nanoneedle as it is pushed into the cell, but do not reveal whether the cell was deformed 

elastically or inelastically. This information can be obtained from unloading curves, when the 

nanoneedle is pulled out of the cell (see Figure 4a). First, the AFM detection system is 
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calibrated by pressing the probe against an "underformable" sample, for which the cantilever 

deflection equals the vertical piezo-displacement of the AFM probe. Here, the calibration was 

performed on a silicon wafer, which is essentially underformable compared to the corneocyte. 

Subsequently, a full indentation loop was measured on a corneocyte with the same AFM 

probe, and the difference in Z between sample and calibration provides the overall 

deformation of the cell for different deflections. In the case shown in Figure 4a, the start of 

the unloading curve, practically speaking, coincides with the terminal part of the loading 

curve, implying that, in this area, the cell recovery was mainly elastic. However, when the 

nanoneedle is pulled out further, a hysteresis was apparent and a small upward force was 

required (negative overshoot in Figure 4a) to remove the nanoneedle from the cell. The size 

of the hysteresis at zero deflection corresponds to the inelastic deformation depth; i.e., to the 

depth of the hole made by the nanoneedle in the corneocyte. The difference between the 

maximum overall deformation and the 'inelastic deformation' gives an estimation of the elastic 

recovery of the cell. 

 Such measurements of full indentation loops corresponding to different ranges of 

applied forces enabled information to be obtained about the elastic limit of the corneocyte 

surface and subsequently about inelastic processes within the cell. Nanoneedles of two 

different diameters, 40 and 75 nm (see inset to Figure 4c) were used. Typical examples of 

loading curve loops are presented in the inset to Figure 4b and show that the thicker needle 

experiences larger forces during penetration into the cell. The main panel of Figure 4b shows 

the residual inelastic deformation of the corneocyte cells as a function of the maximum 

applied indentation force for indents with the two needles. Indentation with a thinner diameter 

needle results in greater inelastic deformation for smaller forces. However, all the curves 

display a similar trend, with a rapid increase in deformation at a depth of 100-200 nm, 

followed by a decrease in the rate of penetration as the force increases further. Figure 4c 

presents the same data scaled to the diameter of the nanoneedles and shows that there is only 
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elastic deformation at very low force-diameter ratios (below 2 N/m) followed by the onset of 

inelastic deformation at higher values. This onset likely corresponds to the elastic limit of the 

corneocyte surface layer. With increasing force, a further rapid increase in inelastic 

deformation occurs at ~10 N/m, possibly due to the rapid yielding of the internal keratin 

filament structure as it is deformed by the nanoneedle.  

This scaling of the data with needle diameter probably indicates that breaking occurs in 

the region of maximum strain at the edges of the needle tip; the damage to the sample is 

concentrated around the circumference of the needle tip (which is proportional to its diameter). 

The similarity between the data obtained using nanoneedles of different diameters would 

suggest that the observed results reflect the properties of the corneocytes themselves rather 

than the characteristics of the nanoneedle probe. 

 These results permit an informed discussion of the origin of the measured forces. 

When the nanoneedle is pushed into the cell, it can experience (at least) elastic, plastic, 

viscous, adhesive and frictional (due to friction of the nanoneedle sidewalls within the pore) 

forces. During unloading, the situation is simpler, because no plastic deformation occurs 

(Oliver and Pharr, 1992). Viscous forces may affect the dynamics of this process but they can 

be decreased by reducing the speed of nanoneedle withdrawal (and they can also be taken into 

account in model calculations) (Oyen and Cook, 2003; Oyen and Ko, 2007). The joint effect 

of adhesive and frictional forces can be estimated from the negative part of full unloading 

loops where the magnitude of the cantilever displacement indicates the force required to 

withdraw the nanoneedle from the pore. As seen in Figure 4a, this 'negative overshoot' was 

usually small compared to the positive part of the indentation loops, indicating that friction 

was not a dominant force in the measurements reported here.   

For quantitative analysis of nanoindentation curves, a number of models have been 

developed (Oyen and Cook, 2009). These are usually applied to unloading curves, because no 
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plastic deformation occurs during retraction and therefore the quantitative analysis is simpler. 

The Oliver-Pharr model (Oliver and Pharr, 1992), developed for plastic-elastic materials, is 

often applied to indentation data on both biological and non-biological samples, and extracts 

the elastic modulus from the slope of the force-deformation curve during retraction of the 

indenter. For a cylindrical indenter, the model suggests that elastic deformation is linear with 

respect to both the applied indentation force and the nano-indenter diameter. The local 

“reduced elastic modulus” (E’), at the depth to which the needle penetrates at the peak loading 

force, can be calculated from the initial slope (dF/dh) of the unloading curve, at the point of 

maximum penetration, from the relationship (Oliver and Pharr, 1992): dF/dh = 2E’(A/π)
½
, 

where A is the projected contact area of the nanoneedle tip during indentation. The reduced 

elastic modulus is given by E’ = E/(1-ν
2
), where E is the Young’s modulus and ν is the 

Poisson ratio of the sample material.  

For classical indenters having a pyramidal shape (Oliver and Pharr, 1992), it is essential 

to measure the initial slope of the unloading curve because the area of contact of the indenter 

with the sample may vary significantly during retraction. However, for cylindrical indenters, 

the contact area is constant, the unloading curve is linear, and the slope can be taken from the 

central part of the curve. This facility is essential if the medium has some viscoelasticity 

because such an effect is most prominent at the region of the greatest indentation force and 

the Oliver-Pharr model does not take this into account. Thus, to reduce the impact of 

viscoelastic effects on the results presented here, analysis of the unloading curves was 

repeated, taking the average slope of the central part of these profiles (between 25 and 75%) 

and neglecting, therefore, the region of greatest indentation force and the point at which the 

indentation force decreases to zero.  

The indentation data were also analysed using a model incorporating elastic, plastic and 

viscoelastic effects (Oyen and Cook, 2003). This approach assumes a linear sum of viscous 
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and elastic contributions to the deformation of a sample, and has previously been used to 

model the behaviour of biomaterials such as bone (Oyen and Ko, 2007).  

Determination of the reduced elastic modulus using the two models, as a function of 

penetration depth for the same subject, is illustrated in Figure 5a; the different approaches 

give qualitatively the same dependence. Figure 5b shows the elastic moduli determined using 

the Oliver-Pharr method for different depths of penetration into corneocytes from 4 “young” 

(19-28 years old) subjects. The same trend is seen for all samples; i.e., a smaller elastic 

modulus near the cell surface and then, as the indentation depth was increased above ~50 nm, 

an increase in the value from about 100 to 500 MPa.  

This analysis agrees with the two-layer interpretation of the shape of the force curves, 

and corresponds to the known structure of the corneocyte: that is, an external lipid-protein 

envelope (the softer, outer layer) surrounding a stiffer, internal matrix of keratin filament 

bundles. The value of ~100 MPa calculated for small indentation depths is similar to the 

surface elastic modulus of corneocytes determined by using indentation with standard AFM 

probes (Gaikwad et al., 2010).  A significant scatter of results for depths above 100 nm, which 

can even be seen in data from the same volunteer, might possibly be attributed to local 

structural variations within corneocytes (perhaps due, as suggested above, to the presence of 

filaggrin at different stages in its degradation). It also should be noted that, even for the same 

volunteer, each experimental point corresponds to a different site on either the same cell or to 

a different cell; thus, any spatial variations in mechanical properties of such cells can 

contribute to the scatter in the experimental results. 

It is important to emphasise that, while the results for elastic moduli within corneocytes 

presented in Figure 5 are in qualitative agreement with the current understanding of the 

structure of these cells, the accuracy of the calculated values is difficult to estimate because 

both indentation models used were originally derived for homogeneous media. Nonetheless, 
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the models should still give reasonable values for samples consisting of two layers with 

drastically different elastic moduli (which more or less corresponds to the situation described 

here). Computer simulations based on a thorough analysis of both the loading and unloading 

curves should give a detailed picture of the mechanical properties for more complex cases 

(Dao et al., 2001; Tai et al., 2007).  

In conclusion, this paper presents measurements of the mechanical properties of the 

internal structure of corneocytes, and shows that a nanoneedle can create a “tomography” 

profile of cell stiffness over a range of depths below the surface.  The technique can map 

structural properties of cells with high spatial resolution, extending AFM measurements into 

three dimensions and thereby expanding its potential application in physiology and 

pharmacology at the nanoscale.  In particular, this method allows nanoprobe penetration 

through the cell envelope to be detected and the elastic properties of intracellular structures to 

be determined. Loading curves give mostly information about stiffness of the cell material 

while unloading curves report on its elastic reaction (recovery). Applying existing indentation 

models to the unloading curves, the elastic modulus of the internal keratin structures of the 

corneocyte has been estimated for the first time since, until now, this cellular domain has not 

been accessible for in situ mechanical measurement. The results also provide support for the 

potential application of the nanoindentation technique to detect mechanical changes in cell 

structure, including those that are disease-related. Equally, in skin-care research, the technique 

may prove useful in the evaluation of clinical treatments or moisturisation, for example, or in 

assessing response to, and recovery from, ultraviolet light exposure from the sun. 

Experimental Section 

Fabrication of Nanoneedle Probes was performed as previously reported using Electron 

Beam Induced Deposition (EBID) with a Hitachi S-4300 SE SEM system equipped with a 

RAITH nanolithography system (Beard and Gordeev, 2011). A beam current of 
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approximately 100 pA and an accelerating voltage of 20 kV were used to grow nanoneedles. 

It should be pointed out that EBID-manufactured nanoneedles are now commercially 

available (e.g. EBD2-100 probes from Nanotools GmbH) and are suggested to have similar 

properties to multiwall carbon nanotube probes. 

Corneocyte Preparation. Corneocytes were obtained from healthy human volunteers, four 

aged between 19 and 28 years and a fifth aged 54 years. Informed consent was obtained from 

all subjects before corneocyte removal.  The procedure involved first delineating a 1 cm
2
 area 

on the subject’s forearm with standard surgical tape and measuring transepidermal water loss 

(TEWL) on this initially unperturbed skin site (Aquaflux, Biox Systems, Ltd., London, UK). 

Layers of corneocytes were then removed by stripping the stratum corneum using hair 

removal wax melted at 60
°
C on glass slides. TEWL was measured after each stripping to 

permit the thickness of stratum corneum removed to be determined and to ensure that the 

level of barrier disruption did not exceed 80% of the maximum possible (Kalia et al., 1996; 

Kalia et al., 2000). Removal of corneocytes using wax was employed because the relatively 

rigid substrate, once the wax had hardened, securely held the cells in place for mechanical 

testing.  

AFM Imaging and Indentation Experiments were performed in air using an AFM operated 

in Tapping Mode (Veeco IIIa Multimode, Veeco Inc., USA). Nanoneedles fabricated by 

EBID on standard, commercially available Tapping Mode AFM probes (Budget Sensors, 

nominal spring constant ~40 N/m, resonance frequency ~300 KHz) were used for both 

imaging and indentation experiments. Spring constants for each AFM probe were calibrated 

based on resonant frequency and quality factor measurements (Sader et al., 1999; Sader, 

1998) carried out using the AFM system, and the cantilever dimensions measured using SEM. 

The accuracy of this method is estimated to be ~20% of the calculated spring constant based 

on uncertainties in the SEM and AFM measurements of the cantilever. Pseudo-3D AFM 
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images and profile data were plotted using the WSxM software from Nanotec Electronica S.L. 

(Horcas et al., 2007). 
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Figure Legends 

 

Figure 1: Testing intracellular mechanics with nanoneedles.  (a) Electron microscopy 

image of a nanoneedle grown on AFM tips (scale bars = 200 nm). (b) 

Nanostructure of part of a corneocyte from SC observed by cryo-electron 

microscopy of vitreous sections of human skin (scale bar of main figure = 50 

nm). The cornified envelope at the interface between the extracellular lipids, 

seen at the bottom of the figure, and the intracellular keratin appears as a darker, 

electron-rich zone.  The inset on the left illustrates the intracellular keratin 

filaments (scale bar = 15 nm), while that on the right shows another, broader 

cornified envelope present in a different corneocyte (scale bar = 50 nm).  (c) 

Schematic representation of the progressive penetration of nanoneedles on AFM 

probes into a monolayer of corneocytes.  

Figure 2: Indentation with a nanoneedle creates a pore on the corneocyte surface. 

Pseudo-3D AFM image of part of a corneocyte surface (a) before, and (b) after 

indentation with a nanoneedle probe of 40 nm diameter; a clear indent on the 

cell surface is apparent. The area imaged is 1.0 x 0.5 µm
2
. (c) Vertical 

indentation profiles before and after the indentation. The profiles are taken along 

the dashed lines shown in images (a) and (b). 

Figure 3: Indentation curves from different corneocytes show a common trend. (a) 

Examples of loading curves recorded from the corneocytes of a 25 year old 

subject; the datasets have been offset vertically for the purpose of clarity. The 

curves show characteristic responses of a number of different corneocytes. The 

inset is a histogram of penetration forces for the different corneocytes examined. 

(b) A set of indentation curves measured from another 25 year old subject; the 

dataset has again been offset for clarity. The inset shows loading curves for two 

subjects aged 25 and 54 years, respectively. 

Figure 4: Analysis of indentation loops allows inelastic deformation to be determined.   

(a) Example of loading and unloading force curves recorded during indentation 

of a corneocyte using a nanoneedle probe. (b) Inelastic deformation calculated 

from indents on cells as a function of applied indentation force for two different 

nanoneedle diameters. A rapid change in deformation occurs at 100-200 nm, 

possibly due to yielding of the internal corneocyte structure. Inset shows 
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examples of approach curves for the two needles employed. (c) Inelastic 

deformation scaled to nanoneedle diameter, demonstrating a common trend. 

Inset images are scanning electron micrographs of the two nanoneedles used in 

these experiments, with diameters of 40 (top) and 75 nm (bottom).  

Figure 5: Corneocytes have a softer surface layer. (a) Agreement of models used to 

calculate the reduced elastic modulus of corneocyte material from a single 

subject as a function of inelastic deformation. (b) Compilation of calculated 

reduced elastic moduli using the Oliver-Pharr model (excluding retract curve 

extremities) for 4 “young” volunteers (19-28 years). Data from different 

volunteers are distinguished by the different symbols used. Error bars express 

the uncertainty of the fit to the Oliver-Pharr model. Dashed lines are guides for 

the eye. 
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Figure 1 

    

(a)          

 

 

 

 

 

(b)                 (c) 

Testing intracellular mechanics with nanoneedles.  (a) Electron microscopy image of a 

nanoneedle grown on AFM tips (scale bars = 200 nm). (b) Nanostructure of part of a 

corneocyte from SC observed by cryo-electron microscopy of vitreous sections of human skin 

(scale bar of main figure = 50 nm). The cornified envelope at the interface between the 

extracellular lipids, seen at the bottom of the figure, and the intracellular keratin appears as a 

darker, electron-rich zone.  The inset on the left illustrates the intracellular keratin filaments 

(scale bar = 15 nm), while that on the right shows another, broader cornified envelope present 

in a different corneocyte (scale bar = 50 nm).  (c) Schematic representation of the progressive 

penetration of nanoneedles on AFM probes into a monolayer of corneocytes. 
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Figure 2 

 

(a)  (b)  

(c)   

 

Indentation with a nanoneedle creates a pore on the corneocyte surface. Pseudo-3D AFM 

image of part of a corneocyte surface (a) before, and (b) after indentation with a nanoneedle 

probe of 40 nm diameter; a clear indent on the cell surface is apparent. The area imaged is 1.0 

x 0.5 µm
2
. (c) Vertical indentation profiles before and after the indentation. The profiles are 

taken along the dashed lines shown in images (a) and (b). 
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Figure 3 

 
 

Indentation curves from different corneocytes show a common trend. (a) Examples of 

loading curves recorded from the corneocytes of a 25 year old subject; the datasets have been 

offset vertically for the purpose of clarity. The curves show characteristic responses of a 

number of different corneocytes. The inset is a histogram of penetration forces for the 

different corneocytes examined. (b) A set of indentation curves measured from another 25 

year old subject; the dataset has again been offset for clarity. The inset shows loading curves 

for two subjects aged 25 and 54 years, respectively. 
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(b) 
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Figure 4 

 

                           

                         

Analysis of indentation loops allows inelastic deformation to be determined.   (a) 

Example of loading and unloading force curves recorded during indentation of a corneocyte 

using a nanoneedle probe. (b) Inelastic deformation calculated from indents on cells as a 

(c) 

(a) 

(b) 
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function of applied indentation force for two different nanoneedle diameters. A rapid change 

in deformation occurs at 100-200 nm, possibly due to yielding of the internal corneocyte 

structure. Inset shows examples of approach curves for the two needles employed. (c) 

Inelastic deformation scaled to nanoneedle diameter, demonstrating a common trend. Inset 

images are scanning electron micrographs of the two nanoneedles used in these experiments, 

with diameters of 40 (top) and 75 nm (bottom). 

 

 

Figure 5 

(a)  

(b)  

Corneocytes have a softer surface layer. (a) Agreement of models used to calculate the 

reduced elastic modulus of corneocyte material from a single subject as a function of inelastic 

deformation. (b) Compilation of calculated reduced elastic moduli using the Oliver-Pharr 

model (excluding retract curve extremities) for 4 “young” volunteers (19-28 years). Data from 

different volunteers are distinguished by the different symbols used. Error bars express the 

uncertainty of the fit to the Oliver-Pharr model. Solid lines are guides for the eye.  

 


