40 research outputs found

    GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway

    Get PDF
    Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Delta(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops

    Теоретические основы интенсификации работы грануляционных устройств с усовершенствованной гидродинамикой

    Get PDF
    Одним із способів зменшення габаритів грануляційного обладнання є вдосконалення гідродинамічних умов перебування в ньому дисперсної фази. Цього можна досягти, зокрема, за рахунок застосування вихрових і високотурбулізованних потоків. Представлена робота присвячена обґрунтуванню можливості створення алгоритму управління рухом дисперсної фази в робочому просторі грануляційного пристрою, на підставі якого буде визначена його оптимальна конструкція з мінімальними габаритами.Одним из способов уменьшения габаритов грануляционного оборудования является усовершенствование гидродинамических условий пребывания в нём дисперсной фазы. Этого можно достичь, в частности, за счет применения вихревых и высокотурбулизованных потоков. Представленная работа посвящена обоснованию возможности создания алгоритма управления движением дисперсной фазы в рабочем пространстве грануляционного устройства, на основании которого будет определена его оптимальная конструкция с минимальными габаритами

    2-NBDG Uptake in Gossypium hirsutum in vitro ovules: exploring tissue-specific accumulation and its impact on hexokinase-mediated glycolysis regulation

    Get PDF
    Fluorescent glucose derivatives are valuable tools as glucose analogs in plant research to explore metabolic pathways, study enzyme activity, and investigate cellular processes related to glucose metabolism and sugar transport. They allow visualization and tracking of glucose uptake, its utilization, and distribution within plant cells and tissues. This study investigates the phenotypic and metabolic impact of the exogenously fed glucose derivative, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose) (2-NBDG) on the fibers of Gossypium hirsutum (Upland cotton) ovule in vitro cultures. The presence of 2-NBDG in the culture medium did not lead to macroscopic morphological alterations in ovule and fiber development or to the acquisition of fluorescence or yellow coloration. Confocal laser scanning microscope imaging and chromatographic analysis of cotton ovules’ outer rim cross-sections showed that the 2-NBDG is transported from the extracellular space and accumulated inside some outer integument cells, epidermal cells, and fertilized epidermal cells (fibers), but is not incorporated into the cell walls. Untargeted metabolic profiling of the fibers revealed significant changes in the relative levels of metabolites involved in glycolysis and upregulation of alternative energy-related pathways. To provide biochemical and structural evidence for the observed downregulation of glycolysis pathways in the fibers containing 2-NBDG, kinetics analysis and docking simulations were performed on hexokinase from G. hirsutum (GhHxk). Notably, the catalytic activity of heterologously expressed recombinant active GhHxk exhibited a five-fold decrease in reaction rates compared to D-glucose. Furthermore, GhHxk exhibited a linear kinetic behavior in the presence of 2-NBDG instead of the Michaelis-Menten kinetics found for D-glucose. Docking simulations suggested that 2-NBDG interacts with a distinct binding site of GhHxk9, possibly inducing a conformational change. These results highlight the importance of considering fluorescent glucose derivatives as ready-to-use analogs for tracking glucose-related biological processes. However, a direct comparison between their mode of action and its extrapolation into biochemical considerations should go beyond microscopic inspection and include complementary analytical techniques

    Rewiring Host Lipid Metabolism by Large Viruses Determines the Fate of Emiliania huxleyi

    Full text link
    Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical “arms race” in the ocean

    Endocannabinoid basis of personality—Insights from animal model of social behavior

    Get PDF
    Rationale: The endocannabinoid system is known to be involved in learning, memory, emotional processing and regulation of personality patterns. Here we assessed the endocannabinoid profile in the brains of mice with strong characteristics of social dominance and submissiveness.Methods: A lipidomics approach was employed to assess the endocannabinoidome in the brains of Dominant (Dom) and Submissive (Sub) mice. The endocannabinoid showing the greatest difference in concentration in the brain between the groups, docosatetraenoyl ethanolamine (DEA), was synthesized, and its effects on the physiological and behavioral responses of Dom and Sub mice were evaluated. mRNA expression of the endocannabinoid receptors and enzymes involved in PUFA biosynthesis was assessed using qRT-PCR.Results: Targeted LC/MS analysis revealed that long-chain polyunsaturated ethanolamides including arachidonoyl ethanolamide (AEA), DEA, docosatrienoyl ethanolamide (DTEA), eicosatrienoyl ethanolamide (ETEA), eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) were higher in the Sub compared with the Dom mice. Untargeted LC/MS analysis showed that the parent fatty acids, docosatetraenoic (DA) and eicosapentaenoic (EPA), were higher in Sub vs. Dom. Gene expression analysis revealed increased mRNA expression of genes encoding the desaturase FADS2 and the elongase ELOVL5 in Sub mice compared with Dom mice. Acute DEA administration at the dose of 15 mg/kg produced antinociceptive and locomotion-inducing effects in Sub mice, but not in Dom mice. Subchronic treatment with DEA at the dose of 5 mg/kg augmented dominant behavior in wild-type ICR and Dom mice but not in Sub mice.Conclusion: This study suggests that the endocannabinoid system may play a role in the regulation of dominance and submissiveness, functional elements of social behavior and personality. While currently we have only scratched the surface, understanding the role of the endocannabinoid system in personality may help in revealing the mechanisms underlying the etiopathology of psychiatric disorders

    Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population

    Full text link
    [EN] The cuticle is a specialized cell wall layer that covers the outermost surface of the epidermal cells and has important implications for fruit permeability and pathogen susceptibility. In order to decipher the genetic control of tomato fruit cuticle composition, an introgression line (IL) population derived from a biparental cross between Solanum pennellii (LA0716) and the Solanum lycopersicum cultivar M82 was used to build a first map of associated quantitative trait loci (QTLs). A total of 24 cuticular waxes and 26 cutin monomers were determined. They showed changes associated with 18 genomic regions distributed in nine chromosomes affecting 19 ILs. Out of the five main fruit cuticular components described for the wild species S. pennellii, three of them were associated with IL3.4, IL12.1, and IL7.4.1, causing an increase in n-alkanes (>= C-30), a decrease in amyrin content, and a decrease in cuticle thickness of similar to 50%, respectively. Moreover, we also found a QTL associated with increased levels of amyrins in IL3.4. In addition, we propose some candidate genes on the basis of their differential gene expression and single nucleotide polymorphism variability between the introgressed and the recurrent alleles, which will be the subjects of further investigation.Research at the IBMCP was supported by the Spanish Ministry of Education and Culture (BIO2013-42193-R) and H2020 TRADITOM (634561). AA, AG, and J-PF-M thank COST FA1106 Quality Fruit for STSM and networking activities. This work was supported by the Israel Science Foundation (ISF) personal grant to AA (grant no. 646/11). We would like to thank the Adelis Foundation, the Leona M. and Harry B. Helmsley Charitable Trust, the Jeanne and Joseph Nissim Foundation for Life Sciences, Tom and Sondra Rykoff Family Foundation Research, and the Raymond Burton Plant Genome Research Fund for supporting AA's laboratory activity. AA is the incumbent of the Peter J. Cohn Professorial Chair. We are very grateful to Prof. Dani Zamir for providing us the S. pennellii IL collection and to Prof. Antonio Heredia for his valuable advice in preparing the manuscript for publication. We would like to acknowledge the help offered by the Electron Microscopy Unit at the WIS (Israel) for the TEM sample preparation and imaging, especially Elena Kartvelishvily, Eugenia Klein, and Eyal Shimoni. Finally, we would also like to thank Calanit Raanan and Tamara Berkutzki (Department of Veterinary Resources, WIS) for their help in tissue fixation and embedding, as well as Hanna Levanony (Department of Plant Sciences, WIS) for her help in tissue staining for the light microscopy studies.Fernández Moreno, JP.; Levy-Samoha, D.; Malitsky, S.; Monforte Gilabert, AJ.; Orzáez Calatayud, DV.; Aharoni, A.; Granell Richart, A. (2017). Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population. Journal of Experimental Botany. 68(11):2703-2716. https://doi.org/10.1093/jxb/erx134S27032716681

    SHINE Transcription Factors Act Redundantly to Pattern the Archetypal Surface of Arabidopsis Flower Organs

    Get PDF
    Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions

    Supplemental data for the publication: "The Role of Vitamin D in Emiliania huxleyi: A Microalgal Perspective on UV-B Exposure"

    No full text
    The following table contains raw transcriptomic data of Emiliania huxleyi CCMP3266 grown under continuous UV radiation or control conditions for 7, 10, and 13 days, obtained using the MARS-seq protocol (Keren-Shaul H. et al. 2013) Column A: E. huxleyi CCMP3266 gene locus IDs Column B: E. huxleyi CCMP3266 representative gene transcripts Columns C: Best matching transcripts in E. huxleyi CCMP1516 Columns D - U: Raw read counts Columns V - AM: DESew2 normalized read counts Columns AN - BE: rlog transformed read counts. Columns BF - FC: Each block of 6 columns represents the results of the differential gene expression analysis between two treatments (time point or UV/nonUV). Columns FD - FJ: Functional annotation

    The photo-protective role of vitamin D in the microalga Emiliania huxleyi

    No full text
    Summary: An essential interaction between sunlight and eukaryotes involves vitamin D production through exposure to ultraviolet (UV) radiation. While extensively studied in vertebrates, the role of vitamin D in non-animal eukaryotes like microalgae remains unclear. Here, we investigate the potential involvement of vitamin D in the UV-triggered response of Emiliania huxleyi, a microalga inhabiting shallow ocean depths that are exposed to UV. Our results show that E. huxleyi produces vitamin D2 and D3 in response to UV. We further demonstrate that E. huxleyi responds to external administration of vitamin D at the transcriptional level, regulating protective mechanisms that are also responsive to UV. Our data reveal that vitamin D addition enhances algal photosynthetic performance while reducing harmful reactive oxygen species buildup. This study contributes to understanding the function of vitamin D in E. huxleyi and its role in non-animal eukaryotes, as well as its potential importance in marine ecosystems

    Data from: Asymmetric adaptation to indolic- and aliphatic-glucosinolates in the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae)

    No full text
    The role glucosinolates play in defending plants against delicate phloem feeders such as aphids and whiteflies is currently not clear as these herbivores may avoid bringing glucosinolates from the phloem sap into contact with myrosinase enzymes. Here, we investigated the effects of high levels of aliphatic- and indolic-glucosinolates on life history traits and detoxification gene expression in two sibling species, B and Q, of the whitefly Bemisia tabaci. High levels of aliphatic-glucosinolates decreased the average oviposition rate of both species, and reduced the survival and developmental rate of Q nymphs. High levels of indolic-glucosinolates decreased the oviposition rate and survival of nymphal stages of the B species and the developmental rate of both species. Molecular analyses revealed two major asymmetries between the B and Q species. First, specific GST genes (BtGST1 and BtGST2) were significantly induced during exposure to indolic-glucosinolates only in Q. This may reflect the genes putative involvement in indolic-glucosinolates detoxification and explain the species' good performance on plants accumulating indolic-glucosinolates. Second, the constitutive expression of eight of the ten detoxification genes analyzed was higher in the Q species than in the B species. Interestingly, four of these genes were induced in B in response to high levels of glucosinolates. It seems, therefore, that the B and Q species differ in their "optimal defense strategy". B utilizes inducible defenses which are profitable if the probability of experiencing the stress is small and its severity is low, while Q invests significant resources in being always "ready" for a challenge
    corecore